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Abstract. The convex cone SC1
SLip(X ) of real-valued smooth semi-Lipschitz functions on a Finsler

manifold X is an order-algebraic structure that captures both the differentiable and the quasi-metric

feature of X . In this work we show that the subset of smooth semi-Lipschitz functions of constant

strictly less than 1, denoted SC1
1−

(X ), can be used to classify Finsler manifolds and to characterize

almost isometries between them, in the lines of the classical Banach-Stone and Mykers-Nakai theorems.

1. Introduction

Starting with the classical Banach-Stone Theorem, there is a long and fruitful line of research whose
aim is to characterize the topological (respectively, metric, smooth) structure of a given space X in
terms of an algebraic or topological-algebraic structure on the space C(X) of all real-valued continuous
functions on X, or on a suitable subspace of C(X). We refer to the survey [7] and references therein for
further information about this subject.

A variant of the preceding results is the so-called Myers-Nakai Theorem, stating that the Riemannian
structure of a Riemannian manifold X is determined by the natural normed algebra C1

b (X ) of all bounded
C1-smooth real functions on X with bounded derivative on X . This result was initially proved by
Myers [11] for compact manifolds and then extended by Nakai [13] to the general case.

Let us recall that according to the Myers-Steenrod Theorem, the Riemannian structure of a Rie-
mannian manifold is characterized in purely metric terms by its associated distance, in the sense that a
bijection between two Riemann manifolds is a Riemann isometry if and only if it is a metric isometry
for the corresponding Riemannian distances. The Myers-Steenrod Theorem has been extended to Finsler
manifolds by Deng and Hou [6], and the results of the aforementioned work have in turn be used in [8] to
extend the Myers-Nakai Theorem from the setting of Riemann manifolds to the one of reversible Finsler
manifolds (see [8, Theorem 3.1] or forthcoming Theorem 2.13).

In this work we will focus on the case of general (non-reversible) Finsler manifolds (Definition 2.15). In
this case, the associated distance is only a quasi-metric, in the sense that it does not need to be symmetric
(see Definition 2.1). In this setting, a natural class of transformations, considered in [10], are the so-called
almost isometries (Definition 2.6(i)) which are bijections between quasi-metric spaces that preserve the
triangular functions. We recall that for a quasi-metric space (X, dX) the associated triangular function
is defined by

TrX(x1, x2, x3) := dX(x1, x2) + dX(x2, x3)− dX(x1, x3), for all x1, x2, x3 ∈ X,

and measures, in a sense, how far the involved points are from achieving equality in the triangle inequality.
Every isometry (that is, a distance-preserving mapping) is an almost isometry and if the distances are
symmetric (which is the case for reversible Finsler manifolds, or more generally, for metric spaces) the
two classes coincide. The difference between isometries and almost isometries is illustrated as follows
(see forthcoming Proposition 2.7 for a more general formulation): a bijection τ : X → Y between Finsler
manifolds is an almost isometry for the respective associated distances dX and dY if, and only if, there
exists a smooth function φ : X → R (which is unique up to an additive constant) such that:

dY(τ(x1), τ(x2)) = dX (x1, x2) + φ(x1)− φ(x2). (1.1)

Strict almost isometries form an intermediate class between isometries and almost isometries: an almost
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isometry τ : X → Y between the quasi-metric spaces (X, dX) and (Y, dY ) is called strict if for some c ≥ 1
it holds

c−1 dX(x, x′) ≤ dY (τ(x), τ(x′)) ≤ c dX(x, x′), for all x, x′ ∈ X.
In the purely metric setting, a functional characterization of almost isometries between quasi-metric

spaces has been obtained in [4] using the convex lattice structure of the space of (backward) semi-Lipschitz
functions (Definition 2.8(ii)) with semi-Lipschitz constant at most 1. In the smooth setting (whenever X
has also a structure of a smooth manifold), we should naturally consider semi-Lipschitz functions that are
additionally C1-smooth. However, this reveals an intrinsic difficulty, since no subclass of smooth functions
can be given a lattice structure (differentiability is lost when taking suprema or infima). Moreover, it is
more natural to consider forward (rather than backward) semi-Lipschitz functions (c.f. Definition 2.8(i)),
since for these functions the semi-Lipschitz constant coincides with supremum of the asymmetric norms
of their derivatives (Corollary 2.25). Last, but not least, for reasons that we shall figure out later, the
natural morphisms between general (non-reversible, non-compact) Finsler manifolds are the strict almost
isometries, rather than almost isometries. (In Proposition 2.26 we shall see that every almost isometry
between compact Finsler manifolds is in fact strict.)

Resuming the above, given a Finsler manifold X , we shall work with the structure SC1
1−(X , dX )

of all C1-smooth, (forward) semi-Lipschitz functions on X with semi-Lipschitz constant strictly less
than 1, considered as a partially ordered convex set. Our main result, in this work, is to establish a
functional characterization of strict almost isometries between Finsler manifolds, in terms of convex-
order isomorphisms between the class of smooth (forward) semi-Lipschitz functions of constant strictly
less than 1 (or, equivalently, smooth functions for which the supremum of the asymmetric norm of their
derivatives is strictly less than 1.)

Indeed, given a strict almost isometry τ : X → Y between Finsler manifolds, it turns out (see Propo-
sition 2.31) that the function φ : X → R associated to τ in the sense of equation (1.1) determines a
bijection T : SC1

1−(Y, dY) → SC1
1−(X , dX ) in the following way: f 7→ Tf = f ◦ τ + φ. It is clear that

this map preserves both order and convex combinations. In the sequel we refer to this mapping as an
isomorphism of convex partially ordered sets.

In the opposite direction, let us note that there are three main types of natural isomorphism between
convex partially ordered sets, namely:

• T1 : SC1
1−(Y, dY)→ SC1

1−(X , dX ), T1f = f ◦ τ , where τ is an isometry.

• T2 : SC1
1−(X , dX )→ SC1

1−(X , c dX ), T2f = c · f , where c ∈ (0,∞).

• T3 : SC1
1−(X , d′X )→ SC1

1−(X , dX ), T3f = f + φ, where d′(x, x′) = d(x, x′) + φ(x)− φ(x′).

In Theorem 3.1 we show that given two connected, second countable and bicomplete Finsler manifolds X
and Y, every isomorphism of convex partially ordered sets T : SC1

1−(Y, dY)→ SC1
1−(X , dX ) is, in fact, a

composition of one of each kind: T is of the form Tf = c · (f ◦ τ) + φ.

1.1. Organization of the paper. In Section 2 we recall definitions and previous results, regarding
quasi-metric spaces, Finsler manifolds and semi-Lipschitz functions. In Section 3 we present the proof of
our main result as well as several consequences.

2. Preliminaries

In this article, we denote by R the set of real numbers. For any two numbers s, t ∈ R, we denote by
s ∨ t (respectively, s ∧ t) the maximum (respectively, the minimum) of s and t.

2.1. Quasi-metric spaces.
We start by recalling the definition of a quasi-metric space. (The reader should be advertised that this

terminology is not universal: some authors consider variants of this definition allowing the quasi-metric
to take negative values and/or the value +∞.)

Definition 2.1 (Quasi-metric space). A quasi-metric space is a pair (X, d), where X is a nonempty set
and d : X ×X → [0,∞) is a function satisfying:

(i) d(x, x) = 0 for all x ∈ X.

(ii) d(x, y) = d(y, x) = 0 implies x = y for all x, y ∈ X.

(iii) d(x, y) ≤ d(x, z) + d(z, y) for any x, y, z ∈ X.

Condition (iii) corresponds to the triangular inequality. Replacing (ii) by the stronger condition
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(ii)’ d(x, y) = 0 =⇒ x = y,

we get the definition of a T1-quasi-metric space.

A quasi-metric space need not be T2 (neither T1), but its symmetrization satisfies both properties,
since it yields a metric space.

Definition 2.2 (Symmetrized distance). For a quasi-metric space (X, d), the reverse quasi-metric d̄ is
defined by d̄(x, y) = d(y, x), and the symmetrized distance ds is defined by ds(x, y) = d(x, y) ∨ d(y, x).
Clearly, d̄ is a quasi-metric and ds is a metric.

The following definition describes the topologies that are naturally associated to a quasi-metric space.

Definition 2.3 (Topologies of a quasi-metric space). To each quasi-metric space (X, d) we can associate
three “natural” topologies:

(i) the forward topology T (d), generated by the family of open forward -balls
{Bd(x, r): x ∈ X, r > 0}, with Bd(x, r) = {y ∈ X: d(x, y) < r} for any x ∈ X and r > 0.

(ii) the backward topology T (d̄), generated by the family of backward -balls:
Bd̄(x, r) = {y ∈ X: d(y, x) < r} for any x ∈ X and r > 0.

(iii) the symmetric topology T (ds), which is the metric topology induced by the distance ds,
or equivalently, by the family {Bd(x, r) ∩Bd̄(x, r): x ∈ X, r > 0}.

There are several ways to consider a notion of completeness for a quasi-metric space, the most forward
one being the usual (metric) completeness of the symmetrized (metric) space. Following terminology of
the recent literature, we refer to this notion as bicompleteness of the quasi-metric space.

Definition 2.4 (Bicompleteness). [5] A quasi-metric space (X, d) is said to be bicomplete if the metric
space (X, ds) is complete.

We shall now define the notion of an almost isometry (a weaker notion than mere isometry) to identify
structure of quasi-metric spaces, which is based on the notion of triangular function.

Definition 2.5 (Triangular function). Let (X, d) be a quasi-metric space. The triangular function
TrX : X ×X ×X → [0,+∞) (associated to the quasi-metric space X) is defined by

TrX(x1, x2, x3) = d(x1, x2) + d(x2, x3)− d(x1, x3).

Definition 2.6 ((strict) almost isometries). A bijection τ : X → Y between the quasi-metric spaces
(X, dX) and (Y, dY ) is called:

(i) an almost isometry, if it preserves the respective triangular functions, that is

TrY (τ(x1), τ(x2), τ(x3)) = TrX(x1, x2, x3), for all x1, x2, x3 ∈ X (2.1)

(ii) a strict almost isometry, if it satisfies (2.1) and there exists a constant c ≥ 1 such that

1

c
dX(x1, x2) ≤ dY (τ(x1), τ(x2)) ≤ c dX(x1, x2) for all x1, x2 ∈ X.

(iii) an isometry, if dX(x1, x2) = dY (τ(x1), τ(x2)) for any x1, x2 ∈ X.

Clearly, every isometry is a (strict) almost isometry, and in metric spaces every almost isometry is in
fact an isometry and the three notions above coincide. The following characterization of almost-isometries
was obtained in [10, Proposition 2.8].

Proposition 2.7 (Characterization of almost isometries). Given quasi-metric spaces (X, dX) and (Y, dY ),
a bijection τ : X → Y is an almost isometry if and only if there exists a function φ : X → R such that
for any x1, x2 ∈ X

dY (τ(x1), τ(x2)) = dX(x1, x2) + φ(x1)− φ(x2).

Moreover, the function φ can be determined up to an additive constant by

φ(x) = dY (τ(x), τ(x0))− dX(x, x0), for any fixed x0 ∈ X.

The forthcoming notion of (forward/backward) semi-Lipschitz function consists of the class of natural
real-valued morphisms defined on a quasi-metric space, that capture its structure. We recall the definition
below.
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Definition 2.8 (Semi-Lipschitz function). Let (X, d) be a quasi-metric space.

(i). A function f : X → R is called forward semi-Lipschitz (or simply semi-Lipschitz ) if there exists
L ≥ 0 such that

f(y)− f(x) ≤ Ld(x, y), for all x, y ∈ X. (2.2)

The infimum of the above constants L > 0 is called the (forward) semi-Lipschitz constant of f , that is,

‖f |S := sup
d(x,y)>0

f(y)− f(x)

d(x, y)
.

We denote by SLip(X, d) (or simply, SLip(X)) the set of (forward) semi-Lipschitz functions on (X, d).

(ii). A function f : X → R is said to be backward semi-Lipschitz if −f is (forward) semi-Lipschitz, or
equivalently, if there exists L ≥ 0 such that f(x)− f(y) ≤ Ld(x, y), for all x, y ∈ X. The infimum of the
above constants L > 0 is called the (backward) semi-Lipschitz constant of f that is,

|f‖S := sup
d(x,y)>0

f(x)− f(y)

d(x, y)
.

Notice that f is backward semi-Lipschitz on (X, d) if and only if f is (forward) semi-Lipschitz on (X, d̄)
(the reverse quasi-metric). Therefore, we shall denote by SLip(X, d̄) (or simply, SLip(X̄) the set of back-
ward semi-Lipschitz functions on (X, d).

(iii). A function f : X → R is Lipschitz, if there exists L ≥ 0 such that for any x, y ∈ X

|f(x)− f(y)| ≤ Ld(x, y).

The Lipschitz constant of f is defined by

‖f‖Lip := sup
d(x,y)>0

|f(x)− f(y)|
d(x, y)

= max{‖f |S , |f‖S}.

Remark 2.9. (i). We use the notation ‖ · |S (with double bar on the left and only one bar on the right)
and respectively, | · ‖S , to indicate that this is an asymmetric quantity, in the sense that even if both
f and −f are semi-Lipschitz, we typically have ‖f |S 6= ‖ − f |S . Notice that if (X, d) is a metric space,
semi-Lipschitz and Lipschitz functions are the same, and ‖f |S = |f‖S = ‖f‖Lip. In a quasi-metric space,
a function f is Lipschitz if and only if both f and −f are semi-Lipschitz. In this case, the Lipschitz
constant of f is the maximum of the semi-Lipschitz constants of f an −f .

(ii). Canonical examples of (forward) semi-Lipschitz functions that are not Lipschitz are functions of the
form d(x0, ·) on certain type of quasi-metric space (see [4, Example 2.3] e.g).

(iii). A semi-Lipschitz function on a quasi-metric space (X, d) might not be “forward continuous” (that
is, continuous with respect to the forward topology, see Definitiion 2.3(i)). However, it is Lipschitz (and
therefore continuous) on the associated symmetrized metric space (X, ds).

We now give a simple characterization of strict almost isometries, which will be useful in the sequel.

Proposition 2.10 (Characterization of strict almost isometries). Let τ : X → Y be an almost isometry
between the quasi-metric spaces (X, dX) and (Y, dY ). Let φ : X → R and ψ : Y → R be the functions
associated to τ and respectively, to τ−1 in the sense of Proposition 2.7, that is,

dY (τ(x1), τ(x2)) = dX(x1, x2) + φ(x1)− φ(x2),

dX(τ−1(y1), τ−1(y2)) = dY (y1, y2) + ψ(y1)− ψ(y2).

Then τ is a strict almost isometry if, and only if, ‖φ|S < 1 and ‖ψ|S < 1.

Proof. Suppose first that τ : X → Y is a strict almost isometry, and consider c > 1 such that

c−1 dX(x, x′) ≤ dY (τ(x), τ(x′)) ≤ c dX(x, x′) for all x, x′ ∈ X.

Since φ(x′)− φ(x) = dX(x, x′)− dY (τ(x), τ(x′)), whenever dX(x, x′) > 0 we have that

φ(x′)− φ(x)

dX(x, x′)
= 1− dY (τ(x), τ(x′))

dX(x, x′)
≤ 1− c−1.

Thus ‖φ|S ≤ 1− c−1 < 1. By considering τ−1, we also obtain that ‖ψ|S ≤ 1− c−1 < 1.
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Conversely, let 0 < α < 1 such that ‖φ|S ≤ α and ‖ϕ|S ≤ α. Then for dX(x, x′) > 0 we have that

dY (τ(x), τ(x′))

dX(x, x′)
= 1− φ(x′)− φ(x)

dX(x, x′)
≥ 1− α =

1

c
,

where c = (1− α)−1. The other inequality follows in the same way. �

Semi-Lipschitz functions (respectively, backward semi-Lipschitz functions) are stable with respect to
the max/min operations. We have in particular the following definition.

Definition 2.11 (The convex lattice SLip1(X̄)). Let (X, d) be a quasi-metric space. The space of
backward semi-Lipschitz functions with backward semi-Lipschitz constant less or equal to 1 is denoted
by

SLip1(X̄) = {f : X → R : f(x)− f(y) ≤ d(x, y)}
(
= {f : X → R : f(y)− f(x) ≤ d̄(x, y)}

)
.

It is not difficult to check that given f, g ∈ SLip1(X̄), both their supremum f ∨ g and their infimum
f ∧ g belong to SLip1(X̄), so SLip1(X̄) has a natural lattice structure. Furthermore, it is also closed
under convex combinations. Thus, following [4], we say that SLip1(X̄) has a convex lattice structure. If
(Y, ρ) is another quasi-metric space, we say that a bijection T : SLip1(Ȳ )→ SLip1(X̄) is a convex lattice
isomorphism if T preserves both order and convex combinations, that is,

• Tf ≥ Tg if and only if f ≥ g for all f, g ∈ SLip1(Ȳ ), and

• T (λf + (1− λ)g) = λTf + (1− λ)Tg for all f, g ∈ SLip1(Ȳ ) and λ ∈ [0, 1].

Remark 2.12. Note that any order-preserving bijection between lattices is automatically a lattice iso-
morphism, so any convex lattice isomorphism satisfies T (f ∧ g) = Tf ∧ Tg and T (f ∨ g) = Tf ∨ Tg for
all f, g ∈ SLip1(Ȳ ).

The following result, taken from [4, Theorem 3.1], reveals the importance of the convex lattice structure
SLip1(X̄) for the study of the quasi-metric structure of a bicomplete quasi-metric space.

Theorem 2.13 (representation of almost isometries between quasi-metric spaces). Let (X, d) and (Y, ρ)
be bicomplete quasi-metric spaces, and let T : SLip1(Ȳ )→ SLip1(X̄) be a convex lattice isomorphism.
Then there exist α > 0, an homeomorphism τ : (X̄, d)→ (Ȳ , ρ) and a quasi-metric d′ on X, such that

• (X, d) and (X, d′) are almost-isometric, and d′(x, x′) = d(x, x′) + T0(x′)− T0(x).

• τ : (X,α · d′)→ (Y, ρ) is an isometry.

• For every f ∈ SLip1(Ȳ ) we have that Tf = c · (f ◦ τ) + φ, where c = α−1 and φ = T0.

Therefore, two bicomplete quasi-metric spaces are almost isometric up to a multiplicative constant
whenever the respective spaces of 1-backward semi-Lipschitz functions are isomorphic as convex lattices,
and that the isomorphism is a composition operator associated with the almost isomerty. Notice that
(forward) semi-Lipschitz functions with semi-Lipschitz constant less or equal to 1 form readily an anal-
ogous convex lattice structure. In particular, the above theorem can be readily restated in a completely
analogous way in terms of the lattices SLip1(X) and SLip1(Y ).

In this work we establish a result of similar flavor to the above, in case that the quasi-metric spaces
are Finsler manifolds (see forthcoming Definition 2.15). The structure that is naturally associated to this
study are (forward) smooth semi-Lipschitz functions. As already mentioned in the introduction, the main
difficult in this framework is that the operations f ∧ g and f ∨ g are not compatible with differentiability
and, as a consequence, we do no longer have a lattice structure.

2.2. Finsler manifolds.

Definition 2.14 (Minkowski norm). Let V be a finite-dimensional real vector space. A functional
F : V → [0,+∞) is called a Minkowski norm on V if the following conditions are satisfied:

(i) Positive homogeneity: F (λv) = λF (v) for every v ∈ V and λ ≥ 0.

(ii) Regularity: F is continuous on V and C∞-smooth on V \ {0}.
(iii) Strong convexity: for every v ∈ V \ {0}, the quadratic form associated to the second derivative

of the function F 2 at v, that is,

gv =
1

2
d2[F 2](v),

is positive definite on V .
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Every Minkoweki norm satisfies in addition the following conditions (see [1, Theorem 1.2.2] e.g.):

(iv) Positivity: F (v) = 0 if and only if v = 0.

(v) Triangle inequality: F (u+ v) ≤ F (u) + F (v), for every u, v ∈ V .

It is clear that every norm associated to an inner product is a Minkowski norm. In general, a Minkowski
norm does not need to be symmetric, and there are indeed very interesting examples of asymmetric
Minkowski norms, such as, for example, Randers spaces ([1]) or more generally Finsler manifolds.

We say F is symmetric (or absolutely homogeneous) if

F (λv) = |λ|F (v) for any λ ∈ R and v ∈ V.
In this case, F is a norm in the usual sense.

Definition 2.15 (Finsler manifold). A Finsler manifold is a pair (X , F ) such that X is a finite-
dimensional C∞-smooth manifold and F : TX → [0,∞) is a continuous function defined on the tangent
bundle TX , satisfying

(i) F is a C∞-smooth on TX \ {0}.
(ii) For every x ∈ X , F (x, ·) : TxX → [0,∞) is a Minkowski norm on the tangent space TxX .

The Finsler structure F is said to be reversible if, for every x ∈ X , F (x, ·) is symmetric. Clearly,
any Riemannian manifold is a reversible Finsler manifold, where the symmetric Minkowski norm on each
tangent space is given by an inner product.

Definition 2.16 (Finsler distance dF ). Let (X , F ) be a connected Finsler manifold. The Finsler distance
dF on X is defined by

dF (x, y) = inf{`F (σ) : σ is a piecewise C1 path from x to y},
where the Finsler length of a piecewise C1 path σ : [a, b]→ X is defined as:

`F (σ) =

∫ b

a

F (σ(t), σ̇(t))dt,

where σ̇ is the derivative of σ. The Finsler distance dF is a T1-quasi-metric on X for any connected
Finsler manifold (X , F ) (see e.g. [1, Section 6.2]).

Remark 2.17 (Topology of a Finsler manifold). Even if the forward and backward distances of a
connected Finsler manifold X differ, they do induce the same topology on X , which coincides with
the manifold topology (see [1, Chapter 6.2]). Therefore, for Finsler manifolds, the three topologies of
Definition 2.2 are the same.

Definition 2.18 (Finsler isometry). A mapping τ : (X , F ) → (Y, G) between Finsler manifolds is said
to be a Finsler isometry if it is a diffeomorphism which preserves the Finsler structure, that is, for every
x ∈ X and every v ∈ TxX :

F (x, v) = G(τ(x), dτ(x)(v)).

A classical result due to Myers and Steenrod [12] asserts that a mapping between Riemannian manifolds
is a Riemannian isometry if and only if it is a metric isometry for the corresponding Riemannian distances.
This was extended by Deng and Hou in [6] to the context of Finsler manifolds:

Theorem 2.19 (Characterization of isometries for Finsler manifolds). Let (X , F ) and (Y, G) be connected
Finsler manifolds. Then τ : (X , F ) → (Y, G) is a Finsler isometry if and only if it is bijective and an
isometry for the corresponding Finsler distances.

A weaker result, established in [10] (see Lemma 3.1 and Proposition 3.2 therein), holds for almost
isometries. Given a diffeomorphism τ : X → Y and a Finsler structure F on X , we denote by τ∗(F )
the Finsler structure on Y obtained as the push-forward of F by τ , that is, for every y ∈ Y and every
w ∈ TyY:

τ∗(F )(y, w) = F (τ−1(y), dτ−1(y)(w)).

Proposition 2.20 (Characterization of almost isometries for Finsler manifolds). Let (X , F ) and (Y, G)
be connected Finsler manifolds, and let τ : X → Y be an almost isometry induced by a function φ : X → R
(in the sense of Proposition 2.7). Then τ and φ are smooth, and G = τ∗(F )− d(φ ◦ τ−1). Conversely, if
G = τ∗(F )− d(φ ◦ τ−1), then τ is an almost isometry.
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In what follows, for simplicity, the term Finsler manifold will also refer to the pair (X , dX ), where
(X , F ) is a Finsler Manifold and dX is the Finsler distance induced by F .

2.3. Smooth semi-Lipschitz functions. We shall now introduce a class of real-valued functions that
is naturally associated to Finsler manifolds.

Definition 2.21 (The convex partially ordered set SC1
1−(X )). Let (X , dX ) be a connected Finsler man-

ifold. The space of C1-smooth (forward) semi-Lipschitz functions with semi-Lipschitz constant strictly
less than 1 will be denoted by

SC1
1−(X ) := {f ∈ C1(X,R) : ‖f |S < 1}.

When the Finsler manifold (X , dX ) is reversible, we write C1
1−(X ) instead of SC1

1−(X ).

The set SC1
1−(X ) (respectively, the set C1

1−(X ) in the reversible case) is convex and partially ordered,
but in contrast to SLip1(X ), it is not a lattice, since differentiability is lost when taking suprema and
infima. Therefore, for the study of Finsler manifolds, we shall consider the structure SC1

1−(X ) as a convex
partially ordered set. We shall now define the notion of isomorphism for the aforementioned structures.

Definition 2.22 (Isomorphism between convex partially ordered sets). Given connected Finsler mani-
folds (X , dX ) and (Y, dY), we say that a bijection

T : SC1
1−(Y)→ SC1

1−(X )

is an isomorphism of convex partially ordered sets if

(i) Tf ≥ Tg if and only if f ≥ g for all f, g ∈ SC1
1−(Y), and

(ii) T (λf + (1− λ)g) = λTf + (1− λ)Tg for all f, g ∈ SC1
1−(Y) and λ ∈ [0, 1].

We shall now define the norm and the asymmetric norm of the derivative df(x) of a smooth function
f ∈ C1(X ), at a point x of a Finsler manifold X .

Definition 2.23 (Norm and asymmetric norm of the derivative df(x)). Let (X , F ) be a connected Finsler
manifold and f : X → R a C1-smooth function. The norm of the derivative of f at the point x ∈ X is
defined by:

‖df(x)‖F = sup{|df(x)(v)| : v ∈ TxX , F (x, v) ≤ 1}.

In the same way, the asymmetric norm of df(x) is defined by:

‖df(x)|F = sup{df(x)(v) : v ∈ TxX , F (x, v) ≤ 1}.

It is clear that, in the case of a reversible Finsler manifold, the norm and the asymmetric norm of
df(x) coincide. In general, we have that ‖df(x)|F ≤ ‖df(x)‖F .

It is proved in [9, Theorem 5] that, for a C1-smooth function f defined on a connected Finsler manifold,
the Lipschitz constant of f coincides with the supremum of the norm of its derivative. In fact, the same
proof of [9, Theorem 5] gives also the corresponding one-sided result:

Proposition 2.24 (‖f |S = ‖df |S,∞). Let (X , F ) be a connected Finsler manifold and f : X → R a
C1-smooth function. Then

‖f‖Lip = ‖df‖∞ := sup{‖df(x)‖F : x ∈ X} ∈ [0,∞],

where

‖f‖Lip = sup
x6=y

|f(x)− f(y)|
dF (x, y)

is the Lipschitz constant of f.

Similarly,

‖f |S = ‖df |S,∞ := sup{‖df(x)|F : x ∈ X} ∈ [0,∞],

where

‖f |S = sup
x 6=y

f(y)− f(x)

dF (x, y)
is the semi-Lipschitz constant of f.

As a direct consequence we obtain the following alternative description of SC1
1−(X ):

Corollary 2.25 (The convex partially ordered set SC1
1−(X )). Let (X , dX ) be a connected Finsler mani-

fold. Then

SC1
1−(X ) = {f ∈ C1(X,R) : ‖f |S < 1} = {f ∈ C1(X,R) : ‖df |S,∞ < 1}.
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Using the above result, we can easily see that, in the case of compact manifolds, every almost isometry
is strict.

Proposition 2.26 (Almost isometries for compact Finsler manifolds). Let (X , F ) and (Y, G) be connected
and compact Finsler manifolds. Then every almost isometry τ : X → Y is strict.

Proof. Consider the function φ : X → R associated to τ in the sense of Proposition 2.7. By the above
proposition we have that G = τ∗(F ) + d(φ ◦ τ−1). Then for every x ∈ X and every v ∈ TxX :

G(τ(x), dτ(x)(v)) = F (x, v) + dφ(x)(v).

As a consequence, if F (x, v) = 1, since we have that dτ(x)(v) 6= 0, and then G(τ(x), dτ(x)(v)) > 0, it
follows that dφ(x)(v) < 1.

For every x ∈ X , the indicatrix Sx := {v ∈ TxX : F (x, v) = 1} is compact. Therefore, for each fixed
x0 ∈ X we can choose a compact neighborhood W x0 such that the portion of the indicatrix bundle over
W x0 is a compact set. That is, the set

Bx0 = {(x, v) ∈ TX : x ∈W x0 ; v ∈ TxX , F (x, v) = 1}
is compact, and furthermore dφ(x)(v) < 1 for every (x, v) ∈ Bx0

. Then ‖dφ(x)|S < 1 for every x ∈W x0 .
Now, from the compactness of X we obtain that ‖dφ|S,∞ < 1. Then by Corollary 2.25 we have that
‖φ|S < 1. Finally, considering τ−1 and using Proposition 2.10 we obtain the result. �

We next give a simple example of non-strict almost isometry:

Example 2.27 (Nonstrict almost isometry). Let X = Y = R. We consider on X the usual Finsler
structure FX (x, v) = |v| and we define on Y the Finsler structure FY(x, v) = |v| − dφ(x)(v), where
φ : R→ R is given by

φ(x) :=

∫ x

0

t2

1 + t2
dt.

Note that (Y, FY) is a Randers space, since |φ′(x)| < 1 for every x ∈ R. It is easy to see that the
associated Finsler distances are dX (x, x′) = |x−x′| and dY(x, x′) = |x−x′|+φ(x)−φ(x′). In this way we
obtain that the identity map τ : X → Y given by τ(x) = x is an almost isometry from (X , dX ) to (Y, dY).
Nevertheless in this case we have that ‖φ|S = 1. Therefore by Proposition 2.10 the almost isometry τ is
not strict.

The following proposition shows that the elements of SC1
1−(X ) can be used to describe open sets of X .

The proof is omitted, as it follows from standard smooth manifold arguments.

Proposition 2.28 (co-zero sets). Let (X , F ) be a Finsler manifold and U an open subset of X . Then,
there exists a smooth function f : X → [0,∞) such that

U = {x ∈ X : f(x) > 0}.
Moreover, f can be chosen so that ‖df‖∞ < 1, and therefore f ∈ SC1

1−(X ).

Let us now recall from [9, Theorem 8] the following smooth approximation theorem. An adaptation
of this result (stated below as Corollary 2.30) will be one of the key elements of our main result.

Theorem 2.29 (Smooth approximation of Lipschitz functions in Finsler manifolds). Let (X , F ) be a con-
nected, second countable Finsler manifold, f : X → R a Lipschitz function, ε : X → (0,+∞) a continuous
function and r > 0. Then, there exists a C1-smooth Lipschitz function g : X → R such that:

(i) |g(x)− f(x)| ≤ ε(x) for all x ∈ X ;

(ii) ‖g‖Lip ≤ ‖f‖Lip + r.

By replacing the Lipschitz functions by semi-Lipschitz functions in Proposition 6, Lemma 7 and The-
orem 8 of [9], we obtain the following corollary:

Corollary 2.30 (Smooth approximation of semi-Lipschitz functions in Finsler manifolds). Let (X , F ) be
a connected, second countable Finsler manifold, f : X → R a semi-Lipschitz function, ε : X → (0,+∞) a
continuous function and r > 0. Then, there exists a C1-smooth semi-Lipschitz function g : X → R that
approximates f in the following sense:

(i) |g(x)− f(x)| ≤ ε(x) for all x ∈ X ;

(ii) ‖g|S ≤ ‖f |S + r.
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The proof of Corollary 2.30 (which is based to results analogous to Proposition 6 and Lemma 7 of [9])
is omitted, since all arguments are straightforward adaptations of the aforementioned ones, by replacing
Lipschitz bounds with semi-Lipschitz ones.

The following proposition shows that given two connected Finsler manifolds X and Y, each strict
almost isometry between X and Y (with respect to their Finsler distances) induces an isomorphism of
convex partially ordered sets between SC1

1−(Y) and SC1
1−(X ).

Proposition 2.31 (Strict almost isometries induce convex partially ordered isomorphsims). Let X , Y
be connected Finsler manifolds and τ : X → Y a strict almost isometry with respect to their Finsler
distances induced by a function φ : X → R (in the sense of Proposition 2.7). Then the mapping{

T : SC1
1−(Y)→ SC1

1−(X )

Tf = f ◦ τ + φ

is an isomorphism of convex partially ordered sets.

Proof. Consider the mapping Tf = f ◦ τ + φ. Note that the convexity and order-preserving properties
of T are immediate, so we only need to check that T is a well-defined bijection. To this end, note first
that if ‖f |S ≤ 1, then ‖Tf |S ≤ 1, since:

Tf(x′)− Tf(x) = f(τ(x′))− f(τ(x)) + φ(x′)− φ(x) ≤ dY(τ(x), τ(x′)) + φ(x′)− φ(x) = dX (x, x′).

We shall now prove that if f ∈ SC1
1−(Y) then ‖Tf |S < 1. Note that T0 = φ and from Proposition 2.10

we have that ‖φ|S < 1. Choose λ ∈ (0, 1) such that ‖λ−1f |S < 1. Then

‖Tf |S =
∥∥T ((λλ−1)f + (1− λ)0

)∣∣
S

=
∥∥λT (λ−1f

)
+ (1− λ)T0

∣∣
S

(2.3)

≤ λ
∥∥T (λ−1f

)∣∣
S

+ (1− λ) ‖T0|S ≤ λ+ (1− λ)‖T0|S < 1.

This shows that T
(
SC1

1−(Y)
)
⊂ SC1

1−(X ) and T is well-defined. An analogous argument holds for the

inverse mapping T−1g = g ◦ τ−1 − φ ◦ τ−1, so we conclude that T is a bijection. �

3. Main result

The main result of this work is the converse of Proposition 2.31 which eventually provides a func-
tional characterization of strict almost isometries between connected, second countable and bicomplete
Finsler manifolds, which becomes a characterization of all almost isometries in the compact setting (see
forthcoming Corollaries 3.22–3.23).

Theorem 3.1 (Main result). Let (X , dX ) and (Y, dY) connected, second countable Finsler manifolds
which are bicomplete (with their respective Finsler distances). Assume there exists an isomorphism of
convex partially ordered sets T : SC1

1−(Y)→ SC1
1−(X ). Then, there exist α > 0, a quasi-metric d′X on

X and a bijection τ : X → Y such that:

(i) (X , dX is almost isometric to (X , d′X ).

(ii) (X , α · d′X ) is isometric to (Y, dY) via τ .

(iii) X is diffeomorphic to Y via τ .

(iv) ∀f ∈ SC1
1−(Y), T f = c · (f ◦ τ) + φ, with c = α−1 and φ = T0.

(In particular, φ is smooth and ‖φ|S < 1).

The proof of the above theorem will be given in Subsection 3.3. Before, we shall need to establish several
intermediate results. In what follows, we shall always assume that (X , dX ), (Y, dY) are connected, second
countable and bicomplete Finsler manifolds and T will denote an isomorphism of the convex partially
ordered sets SC1

1−(Y) and SC1
1−(X ).
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3.1. Basis for the topologies. The following definition introduces some useful notation and describes
a certain type of open subsets of the Finsler manifolds that are naturally associated with the class of
smooth semi-Lipschitz functions.

Definition 3.2 (Open sets related to the order structure). Let h ∈ SC1
1−(Y). We define

SC1
1−(Y)h ={f ∈ SC1

1−(Y) : f ≥ h},
SC1

1−(X )Th ={g ∈ SC1
1−(X ) : g ≥ Th} = T (SC1

1−(Y)h).

Furthermore, for any f ∈ SC1
1−(Y)h, we denote:

supph(f) ={y ∈ Y : f(y) > h(y)} and Vfh = int (supph(f)) ,

suppTh(Tf) ={x ∈ X : Tf(x) > Th(x)} and UTfTh = int (suppTh(Tf)) ,

where closure and interior are taken in the symmetric topologies of (Y, dY) and (X , dX ).

Before we proceed, let us introduce the notion of bump function on a Finsler manifold X .

Definition 3.3 ((Smooth semi-Lipschitz) bump functions). Let X be Finsler manifold. A nonnegative
smooth semi-Lipschitz function b : X → R+ is called a bump function on X centered at a point x0 ∈ X ,
provided b(x0) > 0 and supp(b) ⊂ BX (x0, r) for some r > 0.

It is well-known that for every x0 ∈ X and r > 0 there exist a bump function b ∈ SC1
1−(X )0 with

supp(b) ⊂ BX (x0, r) and b(x0) > 0.

We are now ready to describe a basis for the topologies in Y and X respectively, which will play an
important role in the sequel.

Proposition 3.4 (Topology basis for X and Y). Let X ,Y two Finsler manifolds and let us fix a function
h ∈ SC1

1−(Y). Then the families

Bh(Y) = {Vfh : f ∈ SC1
1−(Y)h} and Bh(X ) = {UTfTh : f ∈ SC1

1−(Y)h}
are basis for the topologies of (Y, dY) and (X , dX ) respectively.

Proof. Given y0 ∈ Y and a ball BY := BY(y0, r) for the distance dsY centered at y0 and of radius r > 0,

we take a bump function b ∈ SC1
1−(Y)0 such that supp(b) ⊂ BY , b(y0) > 0 and ‖b|S +‖h|S < 1. Defining

f = h+ b, we get that y0 ∈ Vfh ⊂ BY .

Given x0 ∈ X and a ball BX for dsX containing x0, take b ∈ SC1
1−(X )0 such that supp(b) ⊂ BX ,

b(x0) > 0 and ‖b|S + ‖Th|S < 1. Since Th+ b ≥ Th and T is an isomorphism of convex partially ordered

sets, there exists f ∈ SC1
1−(Y)h such that Tf = Th+ b. Therefore, x0 ∈ UTfTh ⊂ BX . �

There is a natural bijection between the basis Bh(Y) and Bh(X ):

Definition 3.5 (Bijection between Bh(Y) and Bh(X ) induced by T ). Let h ∈ SC1
1−(Y). Then the

mapping Ih : Bh(Y)→ Bh(X ) defined by T (Vfh ) = UTfTh is a bijection.

Remark 3.6. The aforementioned basis appear to depend on the choice of the function h. Nonetheless,
we shall show in forthcoming Proposition 3.12 and respectively, Corollary 3.15, that the basis Bh(X ),
Bh(Y) and, respectively, the bijection Ih do not depend on the choice of h.

Next, we show that for each h ∈ SC1
1−(Y), the bijection Ih preserves the order structure of (Bh(Y),⊂)

and (Bh(X ),⊂). To this end, following [2] we introduce the following notation:

(i) f uh g = {u ∈ SC1
1−(Y)h : u ≤ f, u ≤ g}.

(ii) f <h g if for any u ∈ SC1
1−(Y)h, u uh g = {h} =⇒ u uh f = {h}.

(iii) Tf uTh Tg = {v ∈ SC1
1−(X )Th : v ≤ Tf, v ≤ Tg}.

(iv) Tf <Th Tg if for any v ∈ SC1
1−(X )Th, v uTh Tg = {Th} =⇒ v uTh Tf = {Th}.

The following proposition gives more insight to the above notation. The proof follows the ideas of [2].

Proposition 3.7. Let h ∈ SC1
1−(Y) and f, g ∈ SC1

1−(Y)h. Then

(i) f uh g = {h} ⇐⇒ Vfh ∩ V
g
h = ∅.

(ii) f <h g ⇐⇒ Vfh ⊂ V
g
h ⇐⇒ supph(f) ⊂ supph(g).
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(iii) Tf uTh Tg = {Th} ⇐⇒ UTfTh ∩ U
Tg
Th = ∅.

(iv) Tf <Th Tg ⇐⇒ UTfTh ⊂ U
Tg
Th ⇐⇒ suppTh(Tf) ⊂ suppTh(Tg).

Proof. (i) If Vfh ∩V
g
h = ∅ and u ∈ f uh g, then u(y) ≤ f(y) ∧ g(y) for all y ∈ (Vfh )c ∪ (Vgh)c = Y, so u = h.

Conversely, suppose that Vfh ∩ V
g
h 6= ∅ and let y ∈ Vfh ∩ V

g
h. Since y ∈ supph(f), there exists a sequence

{yn} ⊂ {y : f(y) > h(y)}, with yn → y. Then, there exists N ∈ N such that yN ∈ Vfh ∩ V
g
h and

f(yN ) > h(yN ). Since yN ∈ supph(g), there exists a sequence (yj) ⊂ {y : g(y) > h(y)} such that

yj → yN , and there is J ∈ N such that yJ ∈ (f −h)−1(0,∞)∩Vfh ∩V
g
h, so f(yJ)∨ g(yJ) > h(yJ). Taking

a suitable bump function b ∈ SC1
1−(Y)0 with positive value at yJ , we get that h � b + h ∈ f uh g, and

therefore f uh g 6= {h}.
(ii) Let f, g ∈ SC1

1−(Y)h. Then we have

f <h g ⇐⇒
[
∀u ∈ SC1

1−(Y)h, u uh g = {h} =⇒ u uh f = {h}
]
,

⇐⇒
[
∀u ∈ SC1

1−(Y)h, Vuh ∩ V
g
h = ∅ =⇒ Vuh ∩ V

f
h = ∅

]
,

⇐⇒
[
∀u ∈ SC1

1−(Y)h, Vgh ⊂ (Vuh )
c

=⇒ Vfh ⊂ (Vuh )
c
]
. (3.1)

Clearly, Vfh ⊂ V
g
h implies f <h g. On the other hand, since Bh(Y) is a basis, we can express Vgh as an

intersection of sets of the form (Vuh )
c
. Let H ⊂ SC1

1−(Y)h such that Vgh =
⋂
u∈H

(Vuh )
c
. Then, using (3.1)

we deduce:

f <h g =⇒ ∀u ∈ H Vgh ⊂ (Vuh )
c

=⇒ Vfh ⊂ (Vuh )
c
,

so that

Vfh ⊂ V
g
h =⇒ Vfh ⊂ V

g
h =⇒ Vfh ⊂ V

g
h,

since the elements of Bh(Y) are regular open sets (that is, they coincide with the interior of their closure).

The proofs of (iii) and (iv) are analogous to the proofs of (i) and (ii) respectively, and will be omitted. �

We have shown that inclusions between members of Bh(Y) (and Bh(X )) can be described using the
relation <h on SC1

1−(Y)h (respectively <Th on SC1
1−(X )h), which depends only on the convex and order

structure of SC1
1−(Y) (respectively SC1

1−(X )), so we can use the isomorphism T to relate inclusions
between sets of each basis.

Proposition 3.8. Let h ∈ SC1
1−(Y) and f, g ∈ SC1

1−(Y)h. Then

f <h g ⇐⇒ Tf <Th Tg.

Therefore,

Vfh ⊂ V
g
h ⇐⇒ UTfTh ⊂ U

Tg
Th .

Proof. Let f, g ∈ SC1
1−(Y)h. Using the properties of T , we obtain:

f <h g ⇐⇒
[
∀u ∈ SC1

1−(Y)h, u uh g = {h} =⇒ u uh f = {h}
]
,

⇐⇒
[
∀u ∈ SC1

1−(Y)h, {v ∈ SC1
1−(Y)h : v ≤ u ∧ g} = {h}

=⇒ {v ∈ SC1
1−(Y)h : v ≤ u ∧ f} = {h}

]
,

⇐⇒
[
∀Tu ∈ SC1

1−(X )Th, {Tv ∈ SC1
1−(X )Th : Tv ≤ Tu ∧ Tg} = {Th}

=⇒ {Tv ∈ SC1
1−(X )Th : Tv ≤ Tu ∧ Tf} = {Th}

]
,

⇐⇒ Tf <Th Tg.

The second part of the statement follows directly using Proposition 3.7. �

Corollary 3.9. For any h ∈ SC1
1−(Y), the mapping Ih from Definition 3.5 is an order-preserving

bijection, that is, for any V1,V2 ∈ Bh(Y)

V1 ⊂ V2 ⇐⇒ Ih (V1) ⊂ Ih(V2).

Next, we show that local inequalities between elements of SC1
1−(Y) can be characterized via its convex-

order structure. In what follows, we fix h ∈ SC1
1−(Y) and for any g ∈ SC1

1−(Y)h and λ ∈ [0, 1], we set:

gλ := λg + (1− λ)h.
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Proposition 3.10 (Characterization of dominance on Vfh ). Let h ∈ SC1
1−(Y) and ϕ,ψ, f ∈ SC1

1−(Y)h.
Then we have:

ϕ ≥ ψ on Vfh ⇐⇒ ∀λ ∈ [0, 1], ∀u <h f, ψλ uh u ⊂ ϕλ uh u.
Proof. The “only if” implication is straightforward. For the “if” implication, suppose there is y0 ∈
Vfh such that ψ(y0) > ϕ(y0). Then there is a symmetric ball B containing y0 such that ψ > ϕ on B.
Furthermore, we can take u ∈ SC1

1−(Y)h defined by u = h + b, with b : Y → [0, ε] a C1 Lipschitz bump
function supported on B such that b(y0) = ε, for some ε > 0. With this, u(y0) := α > h(y0) and

y0 ∈ Vuh ⊂ B ⊂ V
f
h . Without lost of generality, ψ(y0) > α. Let λ ∈ [0, 1] such that ψλ(y0) > α > ϕλ(y0),

and let η : Y → [0, 1] be a C1 Lipschitz bump function such that η|{ψλ<u} = 0, η(y0) = 1, and define

v = ηb+ h. Note that v is semi-Lipschitz, since for y, y′ ∈ Y we have:

v(y′)− v(y) = η(y′)b(y′) + h(y′)− η(y)b(y)− h(y)

= η(y′)b(y′)− η(y′)b(y) + η(y′)b(y)− η(y)b(y) + h(y′)− h(y)

≤ ‖η‖∞(b(y′)− b(y)) + ‖b‖∞(η(y′)− η(y)) + ‖h|S dY(y, y′)

≤ (‖b‖Lip + ε‖η‖Lip + ‖h|S) dY(y, y′).

Choose t ∈ [0, 1] such that vt ∈ SC1
1−(Y). Since for g ∈ SC1

1−(Y) and λ ∈ [0, 1],

(gλ)t = tgλ + (1− t)h = λtg + (1− λt)h = gλt,

we get that vt ∈ SC1
1−(Y)h, vt <h f (since supph(vt) ⊂ supp(b) ⊂ B ⊂ supph(f)), vt(y) ≤ ψλt(y) for all

y ∈ Y , and finally vt(y0) = ut(y0) > ϕλt(y0). Therefore, vt ∈ (ψλt uh vt)\(ϕλt uh vt), a contradiction. �

We now state the following useful lemma.

Lemma 3.11 (Transfer principle). Let h ∈ SC1
1−(Y) and ϕ,ψ, f ∈ SC1

1−(Y)h. Then:

ϕ ≥ ψ on Vfh ⇐⇒ Tϕ ≥ Tψ on UTfTh .
Proof. It follows from Proposition 3.10, since the right side of the equivalence depends only on the convex
and order structure of SC1

1−(Y), which is preserved by T , so for any u, v, f, g ∈ SC1
1−(Y)h we have:

u <h f ⇐⇒ Tu <h Tf and v ∈ f uh g ⇐⇒ Tv ∈ Tf uh Tg.
Therefore (Tϕ)λ = T (ϕλ), for any ϕ ∈ SC1

1−(Y)h and λ ∈ [0, 1]. �

Next, we show that the basis Bh(Y), Bh(X ) and the bijection Ih are independent of h.

Proposition 3.12 (Independence of the topological basis from h). Let h ∈ SC1
1−(Y). Then

(i). Bh(Y) = B0(Y) := B(Y)

(ii). Bh(X ) = B0(X ) := B(X ).

Proof. (i). Let Vf0 ∈ B(X ). Since ‖h|S < 1, there is λ ∈ (0, 1] such that λf + h ∈ SC1
1−(Y), so

{f > 0} = {λf + h > h}, and therefore Vf0 = Vλf+h
h ∈ Bh(Y). Conversely, let Vgh ∈ Bh(Y). Since the

set {g > h} := {y ∈ Y : g(y) > h(y)} is open, by Proposition 2.28 there exists f ∈ SC1
1−(Y)0 such that

{f > 0} = {g > h}, so Vgh = Vf0 ∈ B(Y).

(ii). Let UTfT0 ∈ B(X), and g ∈ SC1
1−(X )0 such that {Tf > T0} = {g > 0}. Take λ ∈ (0, 1] such that

λg + Th ∈ SC1
1−(X ), and since λg + Th ≥ Th, there exists f̃ ∈ SC1

1−(Y)h such that T f̃ = λg + Th.

Therefore, {Tf > T0} = {T f̃ > Th} and UTfT0 = UT f̃Th ∈ Bh(X ). Conversely, let UTfTh ∈ Bh(X ) and
g ∈ SC1

1−(X )0 such that {Tf > Th} = {g > 0}. Taking λ ∈ (0, 1] such that λg + T0 ∈ SC1
1−(X ), we get

that UTfTh = Uλg+T0
T0 ∈ B(X ). �

The following result completes the transfer principle of Lemma 3.11:

Proposition 3.13. Let h ∈ SC1
1−(Y) and U ∈ B(X ). Then V = I−1

h (U) is the only element in B(Y)
such that for any ϕ,ψ ∈ SC1

1−(Y)h

ϕ ≥ ψ on V ⇐⇒ Tϕ ≥ Tψ on U . (3.2)

Proof. Lemma 3.11 ensures us that V satisfies (3.2). Let Ṽ 6= V in B(Y) satisfying the same property.

Without loss of generality, V \ Ṽ 6= ∅. Since both sets are regular open sets, there exists y ∈ V \ Ṽ and

ε > 0 such that the symmetric ball B(y, ε) := B is contained in V \ Ṽ. Given y1 6= y2 in B, we can
take ϕ,ψ ∈ SC1

1−(Y)h such that supph(ϕ)∪ supph(ψ) ⊂ B, ϕ(y1) < ψ(y1) and ψ(y2) < ϕ(y2). Therefore

ϕ � ψ on B ⊂ V, but ϕ ≥ ψ on Ṽ, which contradicts (3.2). �
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Using the above, we show the independence of the bijection (c.f. Definition 3.5) from h for a particular
case. (The general case will be given in Corollary 3.15.)

Proposition 3.14. Let h1, h2 ∈ SC1
1−(Y), such that h1 ≤ h2. Then Ih1 = Ih2 .

Proof. Let U ∈ B(X), and let ϕ,ψ ∈ SC1
1−(Y)h2 such that ϕ ≥ ψ on V2 := I−1

h2
(U). By Lemma 3.11,

Tϕ ≥ Tψ on U , and since h1 ≤ h2, ϕ,ψ ∈ SC1
1−(Y)h1 , and by Lemma 3.11 ϕ ≥ ψ on V1 := I−1

h1
(U).

Hence, by Proposition 3.13, V1 = V2, and therefore, Ih1 = Ih2 . �

Corollary 3.15 (Independence of the bijection from h). Let h ∈ SC1
1−(Y). Then

Ih = I0 := I.

Proof. Consider h∨ 0 ∈ SLip1(Y) and note that ‖h∨ 0|S ≤ ‖h|S < 1. Take η > 0 such that ‖h|S + η < 1
and g : Y → R a semi-Lipschitz C1-smooth approximation given by Corollary 2.30, using ε = η

2 and
r = η. Replacing g by g + ε we get an approximation from above of h ∨ 0, that is:

g ≥ h ∨ 0, ‖g|S ≤ ‖h ∨ 0|S + η < 1 and g(y)− (h ∨ 0)(y) ≤ η, ∀y ∈ Y.
It follows that g ∈ SC1

1−(Y), g ≥ h and g ≥ 0. By Proposition 3.14, Ih = Ig = I0. �

Thanks to this result, we can simply work with the basis B(Y) and B(X ) (without fixing a function h)
and with the bijection I : B(Y)→ B(X ). The following lemma, established in [3, Lemma 6] is paramount
for our considerations.

Lemma 3.16 (Key Lemma). Let (X, dX) and (Y, dY ) be complete metric spaces, and let B(X) and B(Y )
be basis for their topologies. If I : B(Y ) → B(X) is a inclusion-preserving bijection, then there exist
dense subsets X ′ ⊂ X, Y ′ ⊂ Y and an homeomorphism τ : X ′ → Y ′ such that for every x ∈ X ′ and
V ∈ B(Y ) it holds:

τ(x) ∈ V ⇐⇒ x ∈ I(V).

Since we deal with Finsler manifolds X and Y which are bicomplete, we can apply Lemma 3.16 to the
underlying complete metric spaces (X , dsX ) and (Y, dsY) to obtain:

Corollary 3.17 (Homeomorphism of dense subsets). Let X , Y bicomplete Finsler manifolds. There exist
dense subsets for the symmetrized topologies X ′ ⊂ X , Y ′ ⊂ Y and an homeomorphism τ : X ′ → Y ′ such
that for any x ∈ X ′ and V ∈ B(Y),

τ(x) ∈ V ⇐⇒ x ∈ I(V). (3.3)

3.2. Pointwise behaviour of the isomorphism of convex partially ordered sets. The following
result will allow us to deduce information about the pointwise behavior of the isomorphism T .

Corollary 3.18. Let f, g ∈ SC1
1−(Y), X ′ ⊂ X the dense subset of Corollary 3.17 and x0 ∈ X ′. Then,

f(τ(x0)) = g(τ(x0)) ⇐⇒ Tf(x0) = Tg(x0),

where τ : X ′ → Y ′ is the homeomorphism of Corollary 3.17.

Proof. We need to ensure that we can apply Lemma 3.11. To this end, take ε > 0 such that ‖f |S ∨
‖g|S + ε < 1, and let h be a C1-smooth semi-Lipschitz approximation of f ∧ g such that h ≤ f ∧ g
and ‖h|S ≤ ‖f |S ∨ ‖g|S + ε < 1. Set y0 = τ(x0). It suffices to prove that Tf(x0) > Tg(x0) implies
f(y0) > g(y0). Suppose Tf(x0) > Tg(x0) and f(y0) ≤ g(y0). As the relation Tf > Tg is satisfied on a
neighborhood of x0, the relation f ≥ g is satisfied on a neighborhood of y0. Therefore, f(y0) = g(y0)
and y0 is a local minimum of the function f − g, so df(y0) = dg(y0). Let ϕ ∈ SC1

1−(Y)h such that
ϕ(y0) = f(y0) and dϕ(y0) 6= df(y0). Every neighborhood of y0 contains points (and basic open sets)
where ϕ > f and where ϕ < g, and both types of points can be taken on the dense set Y ′. Taking
sequences of these point converging to y0 and applying Lemma 3.11 on the corresponding basic open sets
satisfying the desired inequalities (and the respective basic neighborhoods of the preimages by τ of the
elements of the sequences), it follows by continuity that Tf(x0) ≤ Tϕ(x0) ≤ Tg(x0), a contradiction.
The remaining implication follows by the same argument. �

We shall now show that the convexity property of the isomorphism T determine how its action on the
constant functions.
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Proposition 3.19 (Action of T on the constant functions). Let g ∈ SC1
1−(Y). Then Tg−T0 is constant

if and only if g is constant. Moreover, there exists α > 0 such that

Tλ = T0 + α−1λ, ∀λ ∈ R.

Proof. Let λ ∈ R and gλ ∈ SC1
1−(Y) such that Tgλ = T0 + λ.

Let us first assume that λ ≥ 1. Then by convexity property of the isomorphism T we deduce:

T
(
λ−1gλ

)
= T

(
λ−1gλ + λ−1(λ− 1)0

)
= λ−1Tgλ+λ−1(λ−1)T0 = λ−1T0 + 1 +λ−1(λ−1)T0 = T0 + 1.

It follows that Tg1 := T0 + 1 = T (λ−1gλ), therefore, since T is bijective, λg1 = gλ for all λ ≥ 1, so
‖g1|S ≤ λ−1 for all λ ≥ 1. This latter yields that the function g1 is constant, that is, there exists α ∈ R
such that g1 = α, whence gλ = αλ for all λ ≥ 1. Since Tg1 = T0 + 1 > T0, it follows that α > 0.

Let us now consider the case λ ∈ [0, 1). Then T
(
λg1
)

= λTg1 + (1 − λ)T0 = λ + T0 = T
(
gλ
)
,

therefore, λg1 = λα = gλ for all λ ∈ [0, 1). It follows that gλ = λα for any λ ≥ 0. In particular,

T
(
gα
−1λ
)

= T0 + α−1λ= Tλ for any λ ≥ 0.

Finally, using again convexity of T we get:

T0 = T

(
1

2
λ+

1

2
(−λ)

)
=

1

2
Tλ+

1

2
T (−λ) =

1

2

(
T0 + α−1λ

)
+

1

2
T (−λ),

which yields T (−λ) = T0− α−1λ, for every λ ≥ 0. �

Combining Proposition 3.19 and Corollary 3.18, we obtain

Corollary 3.20. Let f ∈ SC1
1−(Y), X ′ ⊂ X the dense subset from Corollary 3.17 and x0 ∈ X ′. Denoting

by c = α−1 = T1− T0 and φ = T0, we have that

Tf(x0) = c · f(τ(x0)) + φ(x0).

Proof. Applying Corollary 3.18 to f and the constant function of value f(τ(x0)), we get

Tf(x0) = Tg(x0) = T0(x0) + α−1f(τ(x0)) = cf(τ(x0)) + φ(x0).

�

3.3. Proof of Theorem 3.1. Recalling the notation of the statement of Theorem 3.1 we set c := α−1 =
T1 − T0 and φ = T0. Since ‖φ|S < 1, in particular φ(x1) − φ(x2) < dX (x2, x1) for all x1, x2 ∈ X such
that x1 6= x2. It is easy to check that we can use φ to define a quasi-metric on X as in Proposition 2.7,
obtaining that d′X (x1, x2) = dX (x1, x2) + φ(x1)− φ(x2) is a quasi-metric on X such that (X , dX ) is almost
isometric to (X , d′X ). In order to modify the isomorphism T , we define the following mappings:

• R : SC1
1−(X , dX )→ SC1

1−(X , d′X ) by R(g) = g − φ ;

• S : SC1
1−(X , d′X )→ SC1

1−(X , αd′X ) byS(h) = αh ; and

• T̂ : SC1
1−(Y, dY)→ SC1

1−(X , αd′X ) by T̂ (f) = S ◦R ◦ T (f).

Thanks to Proposition 2.31 the mapping R is well-defined: indeed, the same arguments used in Propo-
sition 2.31 are valid for the quasi-metric dX ′ (which comes from a Finsler structure, thanks to Proposi-

tion 2.20). We shall prove that both T̂ and T̂−1 act as composition operators whenever their images are
evaluated on the dense sets X ′ and Y ′ of Corollary 3.17 respectively. Indeed, given f ∈ SC1

1−(Y) and
x0 ∈ X ′, we have:

T̂ f(x0) = S ◦R ◦ T (f)(x0) = α
(
α−1f(τ(x0)) + φ(x0)− φ(x0)

)
= f(τ(x0)).

On the other hand, for g ∈ SC1
1−(X , αd′X ) and y0 ∈ Y ′, we have

T̂−1g(y0) = T−1 ◦R−1 ◦ S−1(g)(y0) = T−1
(
α−1g + φ

)
(y0).

Since α−1g + φ ∈ SC1
1−(X , dX ), there exists f ∈ SC1

1−(Y, dY) such that Tf = α−1g + φ. Then, denoting
x0 = τ−1(y0) we obtain that α−1g(x0) + φ(x0) = Tf(x0) = α−1f(y0) + φ(x0), whence f(y0) = g(x0).
Finally

T̂−1g(y0) = T−1(Tf)(y0) = g(x0) = g(τ−1(y0)).

Let us now prove that τ : (X ′, αd′X )→ (Y ′, dY) is an isometry. To this end, let x1, x2 ∈ X ′, y1 = τ(x1)
and y2 = τ(x2). Take λ ∈ (0, 1) and ε > 0 such that λ+ε < 1, and consider the function fλ(·) = λdY(y1, ·).
Note that ‖fλ|S = λ < 1, so we can apply Corollary 2.30 (smooth approximation of semi-Lipschitz
functions), obtaining g ∈ C1(Y) such that |g(y) − fλ(y)| < ε for all y ∈ Y and ‖g|S ≤ λ + ε < 1. The
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second condition guarantees that g ∈ SC1
1−(Y, dY). From the first condition it follows that |g(y1)| < ε

and g(y2) > λdY(y1, y2)− ε. We deduce:

αd′X (x1, x2) ≥ T̂ g(x2)− T̂ g(x1) = g(y2)− g(y1) ≥ λdY(y1, y2)− 2ε

for any ε > 0 such that ε+λ < 1. Consequently, αd′X (x1, x2) ≥ λdY(y1, y2), for any λ ∈ (0, 1). Therefore

αd′X (x1, x2) ≥ dY(y1, y2).

A similar argument holds for the reverse inequality. Take λ ∈ (0, 1), ε > 0 such that λ+ε < 1, and consider
fλ(·) = λdX (x1, ·). Applying again Corollary 2.30 we get g ∈ C1(X ) such that |g(x)− fλ(x)| < ε for all
x ∈ X and ‖g|S ≤ λ+ ε < 1. Consider g̃ = α(g − φ) + αλφ(x1) ∈ C1(X ). Moreover, g̃ ∈ SC1

1−(X , αd′X ),
since g̃ = S ◦R(g) + αλφ(x1). Let us now note that

|g̃(x2)− λαd′X (x1, x2)| = |α(g(x2)− λdX (x1, x2))− αφ(x2)− λαφ(x2)| ≤ αε+ α(1− λ)|φ(x2)|,
which together with |g̃(x1)| = |αg(x1)− αφ(x1) + αλφ(x1)| ≤ αε+ α(1− λ)|φ(x1)|, yields

dY(y1, y2) ≥ T̂−1g̃(y2)− T̂−1g̃(y1) = g̃(x2)− g̃(x1)

≥ λαd′X (x1, x2)− 2αε− α(1− λ)(|φ(x1)|+ |φ(x2)|),
for any ε > 0 such that ε+ λ < 1. Hence,

dY(y1, y2) ≥ αd′X (x1, x2)− α(1− λ)(|φ(x1)|+ |φ(x2)|),
for any λ ∈ (0, 1), and therefore dY(y1, y2) ≥ αd′X (x1, x2).

We conclude that τ : (X ′, αd′X ) → (Y ′, dY) is an isometry. It is easy to check that (X , αd′X ) is
also bicomplete, as (d′X )s ≤ 2dsX . Then, the isometry τ between the symmetrizations of (X ′, αd′X ) and
(Y ′, dY) extends to an isometry between (X , αd′X ) and (Y, dY). By continuity, we obtain that for any
f ∈ SC1

1−(Y) and x ∈ X ,
Tf(x) = c · f(τ(x)) + φ(x).

Moreover, since τ is an almost isometry between the Finsler manifolds (X , dX ) and (Y, α−1dY), both
τ and φ are smooth, thanks to Proposition 2.20. �

3.4. Functional characterization of isometries and almost isometries. Let us recall from [4] the
following definition:

Definition 3.21 (almost unital isomorphism). An isomorphism of convex partially ordered sets

T : SC1
1−(Y)→ SC1

1−(X )

is called almost unital if T1− T0 = 1.

Applying the results of the previous section we obtain:

Corollary 3.22 (Characterization of strict Finsler almost isometries). Let (X , dX ) and (Y, dY) be con-
nected, second countable Finsler manifolds, which are bicomplete (with their respective Finsler distances).
Then, there is a strict almost isometry between (X , dX ) and (Y, dY) if and only if there exists an almost
unital isomorphism

T : SC1
1−(Y)→ SC1

1−(X ).

In particular, for any such isomorphism, there exist a diffeomorphism τ : X → Y and a smooth function
φ ∈ SC1

1−(X ) such that Tf = f ◦ τ + φ for all f ∈ SC1
1−(Y).

Proof. The “if” implication follows directly from Theorem 3.1 and Definition 3.21, and the “only if” part
is Proposition 2.31. �

Using Proposition 2.26, we obtain the following characterization of almost isometries between compact
Finsler manifolds:

Corollary 3.23 (Characterization of almost isometries between compact Finsler manifolds). Let (X , dX )
and (Y, dY) be compact, connected, second countable Finsler manifolds, which are bicomplete (with their
respective Finsler distances). Then (X , dX ) and (Y, dY) are almost isometric if and only if there exists
an almost unital isomorphism

T : SC1
1−(Y)→ SC1

1−(X ).

In particular, for any such isomorphism, there exist a diffeomorphism τ : X → Y and a smooth function
φ ∈ SC1

1−(X ) such that Tf = f ◦ τ + φ for all f ∈ SC1
1−(Y).

If we focus on isometries, we obtain:
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Corollary 3.24 (Characterization of Finsler isometries). Let (X , dX ) and (Y, dY) be connected, second
countable Finsler manifolds which are bicomplete (with their respective Finsler distances). Then, (X , dX )
and (Y, dY) are isometric if and only if there exists an isomorphism T : SC1

1−(Y)→ SC1
1−(X ) such that

‖Tf |S = ‖f |S , for all f ∈ SC1
1−(Y).

Moreover, for any such isomorphism, there exist a diffeomorphism τ : X → Y and β ∈ R such that
Tf = f ◦ τ + β for all f ∈ SC1

1−(Y).

Proof. If τ is an isometry between (X , dX ) and (Y, dY), then f 7→ T (f) := f ◦ τ is an isomorphism
between convex, partially ordered structures that satisfies ‖Tf |S = ‖f |S for all f ∈ SC1

1−(Y).

Conversely, we can apply Theorem 3.1 to the isomorphism T , and since ‖T0|S = 0, the function T0 is
a constant, so the quasi-metric d′X induced by T0 is the same as dX . In addition, α must be 1 for T to
preserve semi-Lipschitz constants, and therefore τ : (X, dX )→ (Y, dY) is an isometry. �

In the particular case of reversible Finsler manifolds, Theorem 3.1 can be restated as follows.

Corollary 3.25. Let (X , dX ) and (Y, dY) be connected, second countable, reversible complete Finsler
manifolds and T : C1

1−(Y)→ C1
1−(X ) be an isomorphism of convex partially ordered sets. Then, there

exist α > 0, β ∈ R and a bijection τ : X → Y such that:

(i) (Y, dY) and (X , αdX ) are isometrically diffeomorphic via τ .

(ii) For every f ∈ C1
1−(Y ) we have Tf = c · (f ◦ τ) + β, where c = α−1 and β = T0.

Proof. It follows from Theorem 3.1. (Since all involved distances are symmetric, φ must be constant.) �

Therefore we obtain the following characterization of isometries for reversible Finsler Manifolds.

Corollary 3.26 (Characterization of isometries for reversible Finsler manifolds). Let (X , dX ) and (Y, dY)
connected, second countable, reversible complete Finsler manifolds. Then the manifolds (X , dX ), (Y, dY)
are isometric if and only if there exists an almost unital isomorphism T : C1

1−(Y)→ C1
1−(X ). Moreover,

for any such isomorphism there exist a diffeomorphism τ : X → Y and β ∈ R such that

Tf = f ◦ τ + β for all f ∈ C1
1−(Y).

Note that the isomorphism of partially ordered sets in the above Corollary preserves Lipschitz con-
stants, and can be replaced by T̃ = T −β in order to extend linearly to the spaces of C1-smooth Lipschitz
functions, denoted by C1

Lip(Y) and C1
Lip(X ) respectively. Therefore, for the particular case of reversible

Finsler manifolds we can reformulate Corollary 3.26 as follows:

Corollary 3.27. Let (X , dX ) and (Y, dY) connected, second countable, reversible complete Finsler man-
ifolds. Then (X , dX ) and (Y, dY) are isometric if and only if there exists a linear, order and semi-norm
preserving bijection T : (C1

Lip(Y), ‖ · ‖Lip) → (C1
Lip(X ), ‖ · ‖Lip). Moreover, for any such bijection there

exist a diffeomorphism τ : X → Y such that Tf = f ◦ τ for all f ∈ C1
Lip(Y).
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