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Abstract. A set of n × n symmetric matrices whose ordered vector of eigenvalues belongs to
a fixed set in Rn is called spectral or isotropic. In this paper, we establish that every locally
symmetric Ck submanifold M of Rn gives rise to a Ck spectral manifold, for k ∈ {2, 3, . . . ,∞, ω}.
An explicit formula for the dimension of the spectral manifold in terms of the dimension and the
intrinsic properties ofM is derived. This work builds upon the results from [20] and [19], and uses
characteristic properties of locally symmetric submanifolds established in [7].
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1 Introduction

Let Rn
≥ stand for all vectors x ∈ Rn with x1 ≥ x2 ≥ · · · ≥ xn. Denoting by Sn the Eu-

clidean space of n × n symmetric matrices with inner product 〈X,Y 〉 = tr (XY ), we consider the
spectral mapping λ, that is, a function from the space Sn to Rn, which associates to X ∈ Sn

the vector λ(X) ∈ Rn
≥ of its eigenvalues. More precisely, for a matrix X ∈ Sn, the vector

λ(X) = (λ1(X), . . . , λn(X)) consists of the eigenvalues of X counted with multiplicities and ordered
in a non-increasing way:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).
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The object of study in this paper are spectral sets, that is, subsets of Sn stable under orthogonal
similarity transformations: a subset M ⊂ Sn is a spectral set if for all X ∈M and U ∈ On we have
U>XU ∈ M , where On is the group of n × n orthogonal matrices. In other words, if a matrix X
lies in a spectral set M ⊂ Sn, then so does its orbit under the natural action of the group On

On.X := {U>XU : U ∈ On}.

The spectral sets are entirely defined by their eigenvalues, and can be equivalently defined as inverse
images of subsets of Rn by the spectral mapping λ, that is,

λ−1(M) := {X ∈ Sn : λ(X) ∈M}, for some M ⊂ Rn.

For example, if M is the Euclidean unit ball B(0, 1) of Rn, then λ−1(M) is the Euclidean unit ball
of Sn as well. A spectral set can be written as union of orbits:

λ−1(M) =
⋃
x∈M

On.Diag(x), (1.1)

where Diag(x) denotes the diagonal matrix with the vector x ∈ Rn on the main diagonal. Notice
that each orbit is an analytic submanifold of Sn, see Example 2.7 for details.

In this context, a general question arises: What properties on M remain true on the corre-
sponding spectral set λ−1(M)? In the sequel we often refer to this as the transfer principle. The
spectral mapping λ has nice geometrical properties, but it may behave very badly as far as, for
example, differentiability is concerned. This imposes intrinsic difficulties for the formulation of a
generic transfer principle.

Invariance properties of M under permutations often correct such bad behavior and allow us
to deduce transfer properties between the sets M and λ−1(M). A set M ⊂ Rn is symmetric if
σM = M for all permutations σ on n elements, where the permutation σ permutes the coordinates
of vectors in Rn in the natural way. Thus, if the set M ⊂ Rn is symmetric, then properties
such as closedness and convexity are transferred between M and λ−1(M). Namely, M is closed
(respectively, convex [14], prox-regular [5]) if and only if λ−1(M) is closed (respectively, convex,
prox-regular). The next result is another interesting example of such a transfer.

Proposition 1.1 (Transferring algebraicity). LetM⊂ Rn be a symmetric algebraic variety. Then,
λ−1(M) is an algebraic variety of Sn.

Proof. Let p be any polynomial equation ofM, that is p(x) = 0 if and only if x ∈M. Define the
symmetric polynomial q(x) :=

∑
σ p

2(σx). Notice that q is again a polynomial equation of M and
q(λ(X)) is an equation of λ−1(M). We just have to prove that q ◦ λ is a polynomial in the entries
of X. It is known that q can be written as a polynomial of the elementary symmetric polynomials
p1, p2, . . . , pn. Each pj(λ(X)), up to a sign, is a coefficient of the characteristic polynomial of X,
thus it is a polynomial in X. Thus, we can complete the proof.

Concurrently, similar transfer properties hold for spectral functions, that is, functions F : Sn →
Rn which are constant on the orbits On.X or equivalently, functions F that can be written as
F = f ◦ λ with f : Rn → R being symmetric, that is invariant under any permutation of entries
of x. Since f is symmetric, closedness and convexity are transferred between f and F (see [14] for
details). More surprisingly, differentiability properties are also transferred (see [1], [20], [19], [13],
[15] and [18]). As established recently in [5], the same happens for a variational property called
prox-regularity (we refer to [17] for the definition).
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In this work, we study the transfer of differentiable structure of a submanifoldM of Rn to the
corresponding spectral set. This gives rise to an orbit-closed set λ−1(M) of Sn, which, in case it
is a manifold, will be called spectral manifold. Such spectral manifolds often appear in engineering
sciences, often as constraints in feasibility problems (for example, in the design of tight frames [21]
in image processing or in the design of low-rank controller [16] in control). Given a manifold M,
the answer, however, to the question of whether or not the spectral set λ−1(M) is a manifold of
Sn is not direct: indeed, a careful glance at (1.1) reveals that On.Diag(x) has a natural (quotient)
manifold structure, but the question is how the different strata combine as x moves along M.

For functions, transferring local properties, such as differentiability, requires some symmetry,
albeit not with respect to all permutations. Many properties still hold under local symmetry, that
is, invariance under permutations that preserve balls centered at the point of interest. We make
this more precise in Subsection 2.1.

The main goal here is to prove that local smoothness of M is transferred to the spectral set
λ−1(M), whenever M is locally symmetric. More precisely, our aim here is

• to prove that every connected Ck locally symmetric manifoldM of Rn is ‘lifted’ to a connected
Ck manifold λ−1(M) of Sn, for k ∈ {2, 3, . . . ,∞, ω} (where Cω stands for real analytic);

• to derive a formula for the dimension of λ−1(M) in terms of the dimension of M and some
characteristic properties of M.

We established this result, back in 2009, for the cases k = 2, k =∞ and k = ω, through a long
technical proof, in the unpublished technical note [6]. With the current manuscript we provide
a shorter, tractable version of the aforementioned proof, which moreover encompasses all cases
k ∈ {2, 3, . . . ,∞, ω}. Notation and arguments are now been simplified, and additional comments
providing extra intuition have been added. We use the results from [20] and [19], and the properties
of locally symmetric submanifolds of [7].

The particular case of the lift of a C∞ manifold is recovered in a very recent work [4] through an
indirect technique based on metric projections. This technique is specific for the case k =∞, and
moreover, it does not provide any information on the dimension of the spectral manifold λ−1(M).

The main result of the current manuscript is Theorem 3.20 proving the lift of a locally symmetric
Ck manifold together with a formula of its dimension. To get this result, we use extensively
differential properties of spectral functions, as well as structural properties of locally symmetric
manifolds: roughly speaking, given a manifold M which is locally symmetric around x ∈ M, the
proof splits in the two following steps.

Step 1 to exhibit a simple locally symmetric affine manifold D, see (3.8), which will be used as a
domain for a locally symmetric local equation for the manifold M around x (Lemma 3.10);

Step 2 to show that λ−1(D) is an analytic manifold (Theorem 3.15) and use it as a domain to build
a local equation of λ−1(M) (c.f. (3.12)), in order to establish that this latter spectral set is
a manifold (Theorem 3.20). Let us notice, however, that λ−1(D) is not an affine manifold in
general (see comments at the end of Section 3.2).

2 Locally symmetric functions and manifolds

This section does not contain any new results. It introduces relevant background notation
and revises material established in [7] (and previously in [6], though in a less elaborated form)
concerning the structure of a locally symmetric submanifold M of Rn. A key notion is that of a
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characteristic partition (see Section 2.3), as well as the existence of a locally symmetric reduced
tangential parametrization (Theorem 2.17).

2.1 Notation and definitions

A partition P of a finite set N is a collection of non-empty, pairwise disjoint subsets of N with
union N . The elements of a partition are sometimes called blocks. The partition {{i} : i ∈ N} is
denoted by idN . The set of all partitions of N is denoted by ΠN . The symbol RN denotes the
set of all functions from N to R. Set Nn := {1, . . . , n}. When N = Nn, we simply write Πn, idn,
and Rn. The partition induced by x ∈ RN , denoted by Px, is defined by the indexes of the equal
coordinates of x. More precisely, for i, j ∈ Nn we have: i, j are in the same subset of Px if and
only if xi = xj . Given two partitions P and P ′ of ΠN we say that P ′ is a refinement of P , written
P � P ′, if every set in P is a (disjoint) union of sets from P ′. Given a partition P of ΠN , define
the subset ∆P of Rn by

∆P := {x ∈ RN : Px = P}. (2.1)

Obviously ∆P is an affine manifold, not connected in general. (By affine manifold we understand
an open subset of an affine subspace of a vector space.) The collection {∆P : P ∈ ΠN} is an affine
stratification of RN , and for any x ∈ RN there is a δ > 0 such that the ball B(x, δ) intersects only
strata ∆P with P � Px, see [7, Section 2.2]. If the partition P ∈ ΠN is given by P = {I1, . . . , Im},
then the orthogonal and bi-orthogonal spaces of ∆P have the following expressions, respectively,

∆⊥P =
{
x ∈ RN :

∑
j∈Ii

xj = 0 for all i ∈ Nm
}
, (2.2)

∆⊥⊥P = {x ∈ RN : xi = xj for any i, j ∈ Ik, k ∈ Nm}. (2.3)

Note that ∆⊥⊥P = ∆P , where the latter set is the closure of ∆P . We have that ∆⊥⊥P =
⋃
P ′�P ∆P ′ .

Denote by Σn the group of permutations over Nn. This group has a natural action on Rn and
Πn defined for x ∈ Rn by σx := (xσ−1(1), . . . , xσ−1(n)), and for a partition P = {I1, . . . , Im} by
σP := {{σ(i) : i ∈ Ik} : k = 1, . . . ,m}. For a vector x ∈ Rn and a partition P ∈ Πn define the
subgroups of permutations

Σn
P := {σ ∈ Σn : σP = P} and Σn

x := {σ ∈ Σn : σx = x}.

Note that Σn
Px

= Σn
x for all x ∈ Rn.

Definition 2.1 (Locally symmetric function). A map f defined on Rn is called symmetric if

f(σy) = f(y) for all y ∈ Rn and all σ ∈ Σn.

The function f is called locally symmetric at a point x ∈ Rn if

f(σy) = f(y) for all y close to x and all σ ∈ Σn
x.

Locally symmetric functions are those which are symmetric on an open ball centered at x, under
all permutations of entries of x that preserve this ball, see [7, Section 3.1]. The above property is
exactly the required invariance property needed on f allowing the transfer of its differentiability
properties to the spectral function f ◦ λ, see forthcoming Theorem 2.2. For a proof, we refer to
[20] and [22]. (We point out that even though the main result in [20] is stated for symmetric
functions f , the supporting results are stated in locally symmetric language and the argument goes
unchanged in this case.) In the sequel, given a vector x ∈ Rn, Diagx denotes the diagonal matrix
with the vector x on the main diagonal, and diag : Sn → Rn denotes its adjoint operator, defined
by diag (X) := (x11, . . . , xnn) for any matrix X = (xij)i,j ∈ Sn.
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Theorem 2.2 (Derivatives of spectral functions). Suppose that f : Rn → R is locally symmetric
at x ∈ Rn

≥. The function F : Sn → R defined by F = f ◦ λ is Ck in a neighborhood of X ∈ λ−1(x)

if and only if f is Ck in a neighborhood of x. Here k ∈ {1, 2, . . . ,∞, ω}. In that case we have

∇F (X) = U>(Diag∇f(λ(X)))U

where U is any orthogonal matrix such that X = U>(Diag λ(X))U . Equivalently, for any direction
H ∈ Sn we have

∇F (X)[H] = ∇f(λ(X)))[diag (UHU>)]. (2.4)

The differentiability of spectral functions will be used intensively when defining local equations
of spectral manifolds. Before giving the definition of spectral manifolds and locally symmetric
manifolds, let us first recall the definition of submanifolds.

Definition 2.3 (Submanifold of Rn). A nonempty setM⊂ Rn is a Ck submanifold of dimension d
(with d ∈ {0, . . . , n} and k ∈ N ∪ {ω}) if for every x ∈ M, there is a neighborhood U ⊂ Rn of
x and Ck function ϕ : U → Rn−d with Jacobian matrix Jϕ(x) of full rank, and such that for all
y ∈ U we have y ∈M⇔ ϕ(y) = 0. The map ϕ is called local equation of M around x.

Definition 2.4 (Locally symmetric sets). A set S ⊆ Rn is called strongly locally symmetric if

σx ∈ S , for all x ∈ S and all σ ∈ Σn
x.

The set S is called locally symmetric if for every x ∈ S there is a δ > 0 such that S ∩ B(x, δ) is
strongly locally symmetric set.

In other words, S is locally symmetric, if for every x ∈ S there exists δ > 0, such that

σ(S ∩B(x, δ)) = S ∩B(x, δ) , for all σ ∈ Σn
x. (2.5)

In this case, observe that S ∩B(x, ρ) for ρ ≤ δ is a strongly locally symmetric set as well.

Example 2.5 (Trivial examples). Obviously the whole space Rn is (strongly locally) symmetric.
It is also easily seen from the definition that any stratum ∆P is a strongly locally symmetric affine
manifold. If x ∈ ∆P and the ball B(x, δ) is small enough so that it intersects only strata ∆P ′ with
P ′ � P , then B(x, δ) is strongly locally symmetric.

2.2 Locally symmetric manifolds

In this section we recalled from [7] the formal definition of a locally symmetric manifold (sub-
manifold of Rn) and illustrate this notion by means of characteristic examples.

Definition 2.6 (Locally symmetric manifold). A subsetM of Rn is said to be a (strongly) locally
symmetric manifold ifM is both a connected submanifold of Rn without boundary and a (strongly)
locally symmetric set and satisfies M∩Rn

≥ 6= ∅.

The above definition includes the technical assumption M∩ Rn
≥ 6= ∅ since the entries of the

eigenvalue vector λ(X) are non-increasing (by definition of λ). This assumption is not restrictive
since we can always reorder the orthogonal basis of Rn to get this property fulfilled.

Our aim is to show that λ−1(M∩Rn
≥) is a manifold. This objective will be eventually accom-

plished by Theorem 3.20 in Section 3. We now sketch two simple approaches that could be adopted
in order to prove this result and we illustrate the difficulties that appear.
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Consider the expression (1.1) for the spectral set λ−1(M). Even though each orbit On.Diag(x)
is well-known to be analytic manifold, see forthcoming Example 2.7, there is no straightforward
approach showing that the union (1.1) is also a smooth manifold. Our strategy, developed in
Section 3, uses crucial properties of locally symmetric manifolds derived in [7, Section 5], namely,
the existence of a locally symmetric tangential parametrization in an appropriately reduced ambient
space. This is hereby used to provide a locally symmetric local equation defined in a reduced
ambient space (see Section 3.2), which in turn, is used to exhibit an explicit smooth local equation
for the spectral manifold λ−1(M) (see Sections 3.3–3.4).

Example 2.7 (The case whenM = {x}.). Observe that for x ∈ Rn
≥, we have an exact description

of the stabilizer On
Diag(x) of the matrix Diag(x). Recall that the stabilizer of a matrix X ∈ Sn under

the action of the orthogonal group On

On
X := {U ∈ On : U>XU = X}.

Now, considering the partition Px = {I1, . . . , Im} we have that U ∈ On
Diag(x) is a block-diagonal

matrix, made of matrices Ui ∈ O|Ii|. Conversely, every such block-diagonal matrix belongs clearly
to On

Diag(x). In other words, we have the identification

On
Diag(x) ' O|I1| × · · · ×O|Im|.

Since Op is a manifold of dimension p(p− 1)/2, we deduce that On
Diag(x) is a manifold of dimension

dim On
Diag(x) =

m∑
i=1

|Ii|(|Ii| − 1)

2
.

It is well-known that the orbit On.Diag(x) is diffeomorphic to the quotient manifold On/On
Diag(x).

Thus, On.Diag(x) is a submanifold of Sn of dimension

dim On.Diag(x) = dim On − dim On
Diag(x) =

n(n− 1)

2
−

m∑
i=1

|Ii|(|Ii| − 1)

2
=
n2 −

∑m
i=1 |Ii|2

2

=
∑

1≤i<j≤m
|Ii||Ij |,

where we used twice the fact that n =
∑m

i=1 |Ii|.

Let us now explain how a natural approach to show that λ−1(M) is a manifold, using local
equations, would fail. To this end, assume that the manifold M of dimension d ∈ {0, 1, . . . , n}
is described by a smooth equation ϕ : Rn → Rn−d around the point x ∈ M ∩ Rn

≥. This gives

a function ϕ ◦ λ whose zeros characterize λ−1(M) around X ∈ λ−1(M), that is, for all Y ∈ Sn

around X
Y ∈ λ−1(M) ⇐⇒ λ(Y ) ∈M ⇐⇒ ϕ(λ(Y )) = 0. (2.6)

However we cannot guarantee that the function Φ := ϕ ◦ λ is a smooth function unless ϕ is locally
symmetric (since in this case Theorem 2.2 applies). But in general, local equations ϕ : Rn → R of
a locally symmetric submanifold of Rn might fail to be locally symmetric, as shown by the next
easy example (see [7, Example 5.5] and also [6, Example 3.8]).

6



Example 2.8 (A symmetric manifold without symmetric equations). Let us consider the following
symmetric (affine) submanifold of R2 of dimension one:

M = {(x, y) ∈ R2 : x = y} = ∆((12)).

The associated spectral set

λ−1(M) = {A ∈ S2 : λ1(A) = λ2(A)} = {αI2 : α ∈ R}

is a submanifold of S2 around I2 = λ−1(1, 1). It is interesting to observe that though λ−1(M)
is a (spectral) 1-dimensional submanifold of S2, this submanifold cannot be described by a local
equation that is a composition of λ with a symmetric local equation ϕ : R2 → R of M around
(1, 1). Indeed, let us assume on the contrary that such a local equation of M exists, that is, there
exists a smooth symmetric function ϕ : R2 → R with surjective derivative ∇ϕ(1, 1) which satisfies

ϕ(x, y) = 0 ⇐⇒ x = y.

Consider now the two smooth paths c1 : t 7→ (t, t) and c2 : t 7→ (t, 2− t). Since ϕ◦ c1(t) = 0 we infer

∇ϕ(1, 1)(1, 1) = 0. (2.7)

On the other hand, since c′2(1) = (1,−1) is normal to M at (1, 1), and since ϕ is symmetric, we
deduce that the smooth function t 7→ (ϕ ◦ c2)(t) has a critical point at t = 1. Thus,

0 = (ϕ ◦ c2)′(1) = ∇ϕ(1, 1)(1,−1). (2.8)

Therefore, (2.7) and (2.8) imply that ∇ϕ(1, 1) = (0, 0) which is a contradiction. This proves that
there is no symmetric local equation ϕ : R2 → R of the symmetric manifoldM around (1, 1).

We close this section by observing that the property of local symmetry introduced in Defini-
tion 2.4 is necessary and in a sense minimal. In any case, it cannot easily be relaxed as revealed
by the following examples.

Example 2.9 (A manifold without symmetry). Let us consider the set

N = {(t, 0) : t ∈ (−1, 1)} ⊂ R2.

We have an explicit expression of λ−1(N )

λ−1(N ) =

{[
t cos2 θ t(sin 2θ)/2

t(sin 2θ)/2 t sin2 θ

]
,

[
−t sin2 θ t(sin 2θ)/2
t(sin 2θ)/2 −t cos2 θ

]
, t ≥ 0

}
.

It can be proved that this lifted set is not a submanifold of S2 since it has a sharp point at the
zero matrix, as suggested by Figure 1.

Example 2.10 (A manifold without enough symmetry). Let us consider the set

N = {(t, 0,−t) : t ∈ (−ε, ε)} ⊂ R3

and let x = (0, 0, 0) ∈ N . Then, ∆Px = {(α, α, α) : α ∈ R} and N is a smooth submanifold of
R3 that is symmetric with respect to the affine set ∆Px , but it is not locally symmetric. It can be
easily proved that the set λ−1(N ) is not a submanifold of S3 around the zero matrix.
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Figure 1: A spectral subset of S2 represented in R3

2.3 Properties of locally symmetric manifolds

In this section we collect the definitions and results from [7] that are needed in the present
work. Note first that if x ∈M∩Rn

≥, then every set in Px contains consecutive integers.

Definition 2.11 (Much smaller partition). Consider two partitions P, P ′ ∈ Πn.

• The partition P ′ is called much smaller than P , denoted P ′ ≺≺ P , whenever P ′ ≺ P and a
set in P ′ is formed by merging at least two sets from P , of which at least one contains at
least two elements.

• Whenever P ′ ≺ P but P ′ is not much smaller than P we shall write P ′ ≺∼ P . In other words,
if P ′ ≺ P but P ′ is not much smaller than P , then every set in P ′ that is not in P is formed
by uniting one-element sets from P .

Suppose that M is a locally symmetric manifold. Among the partitions P ∈ Πn such that
M∩Rn

≥∩∆P 6= ∅, there is a unique maximal partition P∗ called the characteristic partition ofM.
The characteristic partition describes the strata that may intersect M:

M ⊆ ∆P∗ ∪
( ⋃
P≺∼P∗

∆P

)
⊆ ∆⊥⊥P∗ . (2.9)

Formula (2.9) yields that every set in P∗ contains consecutive integers and

TM(x) ⊂ ∆⊥⊥P∗ . (2.10)

The stratum ∆P∗ is dense in M: for every x ∈M and δ > 0 we have

M∩∆P∗ ∩B(x, δ) 6= ∅. (2.11)
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Define

N1
n := the union of all sets in P∗ with exactly one element, and

N2
n := the union of all sets in P∗ with more than one elements.

Clearly, Nn is the disjoint union of N1
n and N2

n. (Either N1
n or N2

n may possibly be empty.)

Definition 2.12 (canonical split). The characteristic partition P∗ ofM yields a canonical split of
Rn as a direct sum of the spaces RN1

n and RN2
n , as follows: any vector x ∈ Rn is represented as

x = xF ⊗ xM , (2.12)

where

• xF ∈ RN1
n is the subvector of x obtained by collecting the coordinates that have indices in

one-element sets of P∗, preserving their relative order;

• xM ∈ RN2
n is the subvector of x obtained by collecting the remaining coordinates, preserving

their order again.

It is readily seen that the canonical split is linear and also a reversible operation. Reversibility
means that given any two vectors xF ∈ RN1

n and xM ∈ RN2
n , there is a unique vector xF⊗xM ∈ Rn,

such that
(xF ⊗ xM )F = xF and (xF ⊗ xM )M = xM .

This operation is called canonical product. In the particular case P∗ = idn we have that x = xF for
all x ∈ Rn.

Definition 2.13. A partition P ∈ Πn is called P∗-decomposable if P � P◦ for some P◦ ≺∼ P∗.

Note that a P∗-decomposable partition P has the following property: if a set in P contains
elements from N1

n then it cannot contain elements from N2
n. According to (2.9), if x ∈M, then Px

is P∗-decomposable, moreover any P � Px is P∗-decomposable.

Definition 2.14 (P∗-decomposition). For any P∗-decomposable partition P define the partitions
PF ∈ ΠN1

n
and PM ∈ ΠN2

n
as follows

• PF contains those sets of P that contain only elements from N1
n;

• PM contains the remaining sets of P (those containing only elements from N2
n).

The disjoint union P = PF ∪ PM is called the P∗-decomposition of P .

For example, applying the P∗-decomposition to P∗ yields PF∗ = idN1
n
. Notice that the P∗-

decomposition cannot be applied to partitions P that are much smaller than P∗, since these par-
titions may have sets containing elements from both N1

n and N2
n. We summarize the properties of

P∗ and the P∗-decomposition that are needed later.

Proposition 2.15. (i). P ≺∼ P∗ if and only if PF ≺ idN1
n

and PM = PM∗ ;

(ii). If x ∈M and Px � P , then PFx � PF � idN1
n

and PM∗ = PMx � PM .
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If P ∈ Πn is P∗-decomposable, then the partitions PF ∈ ΠN1
n

and PM ∈ ΠN2
n

define strata in

RN1
n and RN2

n , respectively, see (2.1), (2.2), and (2.3). A glance at formulas (2.2) and (2.3) reveals
the following relations:

∆⊥⊥P = ∆⊥⊥PF ⊗∆⊥⊥PM and ∆⊥P = ∆⊥PF ⊗∆⊥PM . (2.13)

Denote by TM(x) and NM(x) the tangent and normal spaces of M at a point x ∈ M∩Rn
≥. The

local symmetry of M implies that these spaces are invariant under all permutations σ ∈ Σn
x. For

any x ∈M

TM(x) = (TM(x) ∩∆⊥⊥Px
)⊕ (TM(x) ∩∆⊥Px

), and (2.14)

NM(x) = (NM(x) ∩∆⊥⊥Px
)⊕ (NM(x) ∩∆⊥Px

). (2.15)

It has been established in [7, Section 5.1] that for any x ∈M

if w ∈ TM(x) then wM ∈ ∆⊥⊥PM
x
, and (2.16)

if v ∈ NM(x) then vF ∈ ∆⊥⊥PF
x

. (2.17)

Next lemma complements the structural property (2.16). It is proved in [7, Lemma 6.1].

Lemma 2.16. For every x ∈ M and ε > 0, there exists a w ∈ TM(x) ∩ B(0, ε), such that in the
vector wF ∈ RN1

n every subvector wFI has distinct coordinates for every set I in the partition PFx .

In the rest of this section, we briefly recall a local equation, called tangential parametrization,
for a submanifold of Rn, specialized to our context of a locally symmetric manifold M.

To this end, let πT : Rn → TM(x) denote the orthogonal projection onto the tangent space at x
and let πN be the orthogonal projection onto the normal space NM(x). Let π̄T : Rn → x+ TM(x)
be the projection onto the affine space x + TM(x), and similarly, let π̄N denote the projection of
Rn onto x+NM(x). Note that for all y ∈ Rn sufficiently close to x we have

π̄T (y) + π̄N (y) = x+ y. (2.18)

The local symmetry of M implies the existence of δ > 0 such that

σπ̄T (y) = π̄T (σy) and σπ̄N (y) = π̄N (σy) (2.19)

for all y ∈ B(x, δ) and all σ ∈ Σn
x. Shrinking further δ > 0 we can ensure that the following

conditions hold.

(A1) The restriction π̄T : M∩B(x, δ)→ x+ TM(x) is a diffeomorphism onto its image.

(A2) The ball B(x, δ) intersects only strata ∆P with P � Px.

Under the above conditions M∩ B(x, δ) is a strongly locally symmetric manifold (see Equa-
tion (2.5)). In addition, there exists a smooth map

φ : (x+ TM(x)) ∩B(x, δ)→ NM(x), (2.20)

such that
M∩B(x, δ) = {y + φ(y) ∈ Rn : y ∈ (x+ TM(x)) ∩B(x, δ)}. (2.21)

In words, the function φ measures the difference between the manifold and its tangent space.
Clearly, φ ≡ 0 if M is an affine manifold around x. Note that, technically, the domain of the
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map φ is the (strongly symmetric) open set π̄T (M∩ B(x, δ)), which may be a proper subset of
(x + TM(x)) ∩ B(x, δ). For sake of readability we shall not introduce the more precise (but also
more complicated notation) of a rectangular neighborhoods around x.

We say that the map ψ : (x+ TM(x)) ∩B(x, δ)→M∩B(x, δ) defined by

ψ(y) = y + φ(y) (2.22)

is the tangential parametrization of M around x. This function is indeed smooth, one-to-one and
onto, with a full rank Jacobian matrix Jψ(x): it is a local diffeomorphism at x, and more precisely
its inverse is π̄T , that is, locally π̄T (ψ(y)) = y. We are now ready to state the main result of [7]
(namely, [7, Theorem 5.4]). We point out that the proof of (2.23) utilizes the fundamental relation
(2.17) established in [7, Theorem 5.1].

Theorem 2.17 (Tangential parametrization). Let x ∈M. Then, the function φ in the tangential
parametrization satisfies

φ(x) ∈ NM(x) ∩∆⊥⊥Px
. (2.23)

Moreover, for all y ∈ (x+ TM(x)) ∩B(x, δ) and for all σ ∈ Σn
x we have

ψ(σy) = σψ(y) (2.24)

and
φ(σy) = σφ(y) = φ(y). (2.25)

3 Spectral manifolds

We begin this section with an example of the special case when the (locally symmetric) manifold
M is (a relatively open subset of) a stratum ∆P . In this case, basic algebraic arguments allow to
conclude directly that λ−1(M) is a smooth manifold.

Example 3.1 (Lift of stratum ∆P ). Suppose that the manifoldM is (a relatively open subset of)
a stratum ∆P and intersects Rn

≥. In this case, we show directly that the spectral set λ−1(M) is
an analytic (fiber) manifold using basic arguments exposed in Example 2.7. As stated therein, the
orbit On

Diag(x) is a submanifold of Sn of dimension∑
1≤i<j≤m

|Ii||Ij |,

where P = {I1, . . . , Im}. The key is to observe that, in our case, for any x ∈M we have

On
Diag(x) ' O|I1| × · · · ×O|Im|

and Px = P . Then, all the orbits On.Diag(x) are manifolds diffeomorphic to On/On
Diag(x̄) (fibers),

whence of the same dimension. We deduce that λ−1(M) is a submanifold of Sn diffeomorphic to
the direct product M×

(
On/On

Diag(x̄)

)
, with dimension

dimλ−1(M) = d+
∑

1≤i<j≤m
|Ii||Ij |. (3.1)

The example is complete.
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The proof of the general situation (that is, M arbitrary locally symmetric manifold) is a gene-
ralization of the above arguments, albeit a nontrivial one. The strategy is more precisely explained
in Section 3.2. Before this, in Section 3.1 we treat the special case P∗ = idn. In this case, the
proof that a locally symmetric manifold lifts smoothly in Sn runs out without extra technicalities,
illustrating the main ideas. In addition, the main result in the special case P∗ = idn is a needed
step in the general case.

Before we proceed, let us introduce the following definition.

Definition 3.2 (Ordered partition). A partition P = {I1, . . . , Im} of Nn is called ordered if for any
1 ≤ i < j ≤ m the smallest element in Ii is (strictly) smaller than the smallest element in Ij .

For example, the ordered version of the partition {{4}, {3, 2}, {1, 5}} of N5 is {{1, 5}, {2, 3}, {4}}.
Consider an ordered partition P = {I1, . . . , Im} of Nn. Consider the space SnP of all block-
diagonal symmetric matrices in which the `-th block is of size |I`|, and denote by On

P the sub-
group of block-diagonal orthogonal matrices in which the `-th block is of size |I`|. Denote by
XP = Diag(X1, . . . , Xm) an element of SnP , where X` ∈ S|I`|. For any XP ∈ SnP , we define

λP (XP ) :=
(
λ(X1), . . . , λ(Xm)

)
∈ Rn.

Note the difference between λP (XP ) and λ(XP ): the coordinates of the vector λP (XP ) are ordered
within each block, while those of λ(XP ) are ordered globally. For technical reasons we shall need a
slight modification of Theorem 2.2 (Derivatives of spectral functions) to cover the case of spectral
functions of the type f ◦ λP on SnP .

Lemma 3.3. Suppose that f : Rn → R is locally symmetric at x ∈ Rn
≥ and let δ > 0 be small

enough. The function F : SnPx
→ R defined by F = f ◦ λPx is Ck on λ−1

Px
(B(x, δ)) if and only if f

is Ck on B(x, δ). The Jacobian of f ◦ λPx at X ∈ λ−1
Px

(B(x, δ)) applied to H ∈ SnPx
is

J(f ◦ λPx)(X)[H] = J(f ◦ λ)(X)[H].

Here k ∈ {1, 2, 3, . . . ,∞, ω}.

Proof. Let Px = {I1, . . . , Im} and let X = Diag(X1, . . . , Xm) ∈ λ−1
Px

(B(x, δ)). Suppose B(x, δ)
intersects only strata ∆P with P � Px. The fact that x ∈ Rn

≥ implies that λmin(X`) > λmax(X`+1)
for 1 ≤ ` ≤ m− 1. Hence, λPx(X) = λ(X) and the claim follows from Theorem 2.2.

3.1 Lift into Sn (case P∗ = idn)

In this section, we consider the case when P∗ = idn. This condition implies that PF = P for
any P∗-decomposable partition P and vF = v for any v ∈ Rn. Thus, Property (2.17) simplifies to

NM(x) ⊆ ∆⊥⊥Px
for all x ∈M. (3.2)

The goal here is to establish, under conditions (A1)–(A2), that if x ∈ M ∩Rn
≥ the set λ−1

Px
(M∩

B(x, δ)) is a submanifold of SnPx
, and to calculate its dimension. This is an intermediate step on

the way to prove that λ−1(M) is a submanifold of Sn. The benefit of treating first the special case
P∗ = idn is two fold. On the one hand the results in this subsection are needed later and on the
other hand the succession of arguments in the general case is similar to the one here.

Using (3.2), we can exhibit easily a locally symmetric local equation ofM. Thus, fix x ∈M∩Rn
≥

and recall the definitions of the projections π̄T and π̄N .
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Lemma 3.4. If P∗ = idn then π̄N is locally symmetric at x.

Proof. Take any y ∈ B(x, δ′), where δ > δ′ > 0 is small so thatB(x, δ) intersects only strata ∆P for
P � Px. Without loss of generality, there is z ∈M∩B(x, δ) such that π̄N (y) = π̄N (z). The fact that
z ∈ ∆⊥⊥Pz

together with (3.2), applied to z gives that z +NM(z) ⊆ ∆⊥⊥Pz
. Therefore π̄N (z) ∈ ∆⊥⊥Pz

,
and consequently for all σ ∈ Σn

x, we have π̄N (σy) = σπ̄N (y) = σπ̄N (z) = π̄N (z) = π̄N (y). This
means that π̄N is locally symmetric at x.

Recall also the definition of φ given by (2.20) and the conditions on the ball B(x, δ) there.
Define the function

φ̄ :

{
B(x, δ) −→ NM(x)

y 7−→ x+ φ(π̄T (y))− π̄N (y).
(3.3)

Lemma 3.5 (Existence of a locally symmetric local equation in the case P∗ = idn). The function φ̄
defined by (3.3) is a local equation of M around x ∈M that is locally symmetric. In other words

φ̄(σy) = σφ̄(y) = φ̄(y) for all y ∈ B(x, δ) and all σ ∈ Σn
x.

Proof. For y ∈ B(x, δ) we have that

φ̄(y) = 0 ⇐⇒ π̄N (y) = x+ φ(π̄T (y)) ⇐⇒ y = π̄T (y) + φ(π̄T (y)) ⇐⇒ y ∈M∩B(x, δ),

using successively (2.18) and (2.21). The Jacobian mapping Jφ̄(y) is a linear map from Rn

to NM(x), which, when applied to any direction h, yields

Jφ̄(y)[h] = Jφ(π̄T (y))[πT (h)]− πN (h).

Clearly, for h ∈ NM(x) we have Jφ̄(x)[h] = −h showing that the Jacobian in onto and hence of
full rank. Thus, φ̄ is a local equation ofM around x. In view of Theorem 2.17 and the symmetries
of the projections, for any σ ∈ Σn

x and any y ∈ B(x, δ) we have (φ ◦ π̄T )(σy) = (φ ◦ π̄T )(y). This,
implies that

σ−1φ̄(σy) = σ−1(x+ (φ ◦ π̄T )(y)− σπ̄N (y)) = φ̄(y).

Since φ̄(y) ∈ NM(x) ⊂ ∆⊥⊥Px
, we obtain the second claimed equality σφ̄(y) = φ̄(y).

Next, consider the map

Φ̄:

{
λ−1
Px

(B(x, δ)) −→ NM(x)

X 7−→ (φ̄ ◦ λPx)(X) = x+ φ(π̄T (λPx(X)))− π̄N (λPx(X)).
(3.4)

Since φ̄ is a local equation of M around x, we deduce that for X ∈ SnPx

X ∈ λ−1
Px

(M∩B(x, δ)) ⇐⇒ λPx(X) ∈M∩B(x, δ) ⇐⇒ Φ̄(X) = 0. (3.5)

Thus, in order to prove that Φ̄ is a local equation for λ−1
Px

(M∩B(x, δ)), it remains to establish that

Φ̄ is Ck-differentiable and that its Jacobian JΦ̄ has full rank at X ∈ λ−1
Px

(x). This is accomplished
in Theorem 3.7. First we need the following lemma.

Lemma 3.6. The function π̄N◦λPx is analytic on λ−1
Px

(B(x, δ)). Moreover, at any X ∈ λ−1
Px

(B(x, δ))
and any direction H ∈ SnPx

we have

J(π̄N ◦ λPx)(X)[H] = πN (diag (UHU>)),

where U ∈ On
Px

is such that X = U>
(
Diag λPx(X)

)
U .
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Proof. By Lemma 3.4, π̄N is locally symmetric at x. By Lemma 3.3, π̄N ◦ λPx is analytic on
λ−1
Px

(B(x, δ)). Its Jacobian at X ∈ λ−1
Px

(B(x, δ)) in the direction H ∈ SnPx
is

J(π̄N ◦ λPx)(X)[H] = J(π̄N ◦ λ)(X)[H] = Jπ̄N (λ(X))[diag(UHU>)] = πN (diag (UHU>)),

where the second equality following by (2.4).

Theorem 3.7 (Main result (case P∗ = idn)). Let M be a locally symmetric Ck submanifold of
Rn of dimension d. Suppose P∗ = idn, fix x ∈ M ∩ Rn

≥ and let δ > 0 be such that conditions

(A1)–(A2) hold. Then, λ−1(M∩B(x, δ)) is a Ck submanifold of Sn with codimension n− d. Here
k ∈ {2, 3, . . . ,∞, ω}.

Proof. By Theorem 2.17 and (2.19), the function φ ◦ π̄T is locally symmetric at x. Therefore
Lemma 3.3 yields that φ ◦ π̄T ◦ λPx is Ck on λ−1

Px
(B(x, δ)) = λ−1(B(x, δ)). Combining this with

Lemma 3.6, we deduce that the function Φ̄ defined by (3.4) is Ck on λ−1(B(x, δ)).

Let us now show that the Jacobian JΦ̄ has full rank at X ∈ λ−1(B(x, δ)). First, the gradient
of the i-th coordinate function φi ◦ π̄T at x applied to the direction h is

∇(φi ◦ π̄T )(x)[h] = ∇φi(π̄T (x))[πT (h)].

Second, Lemma 3.3 and Theorem 2.2 give that the gradient of φi ◦ π̄T ◦ λ at X in the direction
H ∈ Sn is

∇(φi ◦ π̄T ◦ λ)(X)[H] = ∇φi(π̄T (λ(X)))[πT (diag (UHU>))],

where U ∈ On is such that X = U>(Diag λ(X))U . Combining this with Lemma 3.6 we obtain the
following expression for the derivative of the map Φ̄:

JΦ̄(X)[H] = Jφ(π̄T (λ(X)))[πT (diag (UHU>))]− πN (diag (UHU>)).

Notice that for any h ∈ NM(x) defining H := U>(Diag h)U ∈ Sn we have

JΦ̄(X)[H] = −h,

showing that the linear map JΦ̄(X) : Sn → NM(x) is onto and thus has full rank. In view of (3.5),
Φ̄ is a local equation of M around X.

Since d = dim (M) = dim (TM(x)) and dim (NM(x)) = n − d and since φ̄ and Φ̄ are local
equations of the manifolds M and λ−1(M∩ B(x, δ)) respectively, these manifolds have the same
codimension n− d.

3.2 Reduction of the ambient space (general case)

We now consider a manifold M with general characteristic partition P∗ and δ > 0 such that
conditions (A1)–(A2) hold. Using (2.21) and (2.23) we obtain the inclusion

M∩B(x, δ) ⊂
(
x+ TM(x)⊕

(
NM(x) ∩∆⊥⊥Px

) )
∩B(x, δ).

To define a local equation of M in the appropriate space, we introduced the reduced tangent and
normal spaces.

T red
M (x) := TM(x) ∩∆⊥Px

and N red
M (x) := NM(x) ∩∆⊥⊥Px

. (3.6)
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Note that theses spaces are invariant under permutations σ ∈ Σn
x. For later use when calculating

the dimension of spectral manifolds, we denote

nred := dimN red
M (x). (3.7)

We now describe the set on which the local equation of λ−1(M) will be defined. Let x = xF⊗xM
be the canonical split of x in Rn. Naturally B(xF , δ1) denotes the open ball in RN1

n centered at xF

with radius δ1, and B(xM , δ2) denotes the open ball in RN2
n centered at xM with radius δ2. Define

the following rectangular neighborhood of x

B(x, δ1, δ2) := B(xF , δ1)⊗B(xM , δ2).

Choose δ1, δ2 so that B(x, δ1, δ2) ⊂ B(x, δ). By conditions (A1)–(A2) and Proposition 2.15 (ii),
the ball B(xF , δ1) intersects only strata ∆PF ⊂ RN1

n for PF � PFx , and similarly for the ball
B(xM , δ2). Thus, B(x, δ1, δ2) is invariant under permutations σ ∈ Σn

x. The key element in our next
development is going to be the set

D :=
(
x+ TM(x)⊕N red

M (x)
)
∩B(x, δ1, δ2), (3.8)

which will play the role of a new ambient space. Indeed, D is an affine manifold of Rn and will be
the domain of a symmetric local equation ofM. We gather properties of D in the next proposition.

Proposition 3.8 (Properties of D). In the situation above, there holds

TM(x)⊕N red
M (x) = T red

M (x)⊕∆⊥⊥Px
. (3.9)

Hence, we can reformulate

D =
(
x+

(
T red
M (x)⊕∆⊥⊥Px

))
∩ B(x, δ1, δ2).

Moreover, the set D is invariant under all permutations σ ∈ Σn
x, and hence it is a locally symmetric

set.

Proof. Indeed, applying successively (3.6), (2.14) and since TM(x) and NM(x) are orthogonal
complements, we have

TM(x)⊕N red
M (x) = TM(x)⊕

(
NM(x) ∩∆⊥⊥Px

)
= (TM(x) ∩∆⊥Px

)⊕ (TM(x) ∩∆⊥⊥Px
)⊕ (NM(x) ∩∆⊥⊥Px

)

=
(
TM(x) ∩∆⊥Px

)
⊕∆⊥⊥Px

= T red
M (x)⊕∆⊥⊥Px

,

which yields (3.9) since x ∈ ∆⊥⊥Px
and 0 ∈ T red

M (x). The invariance of D follows from the invariance
of each set in the intersection.

Let π̄red
N and πred

N be the projections onto x+N red
M (x) and N red

M (x) respectively. Note that

x+ y = π̄T (y) + π̄red
N (y) for all y ∈ x+ TM(x)⊕N red

M (x). (3.10)

The next result is the analogue of Lemma 3.4.

Lemma 3.9 (Local symmetry of π̄red
N ). The projection π̄red

N is locally symmetric at x.
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Proof. Projecting onto x+N red
M (x) can be accomplished in two steps. First projecting onto x+∆⊥⊥Px

and then onto x + N red
M (x). Now, the projection onto x + ∆⊥⊥Px

is given by y 7→ x + 1
|Σn

x |
∑
σ∈Σn

x

σy,

see [7, Lemma 2.9]. Since it is locally symmetric at x, the result follows.

Similarly to (3.3) we define the map

φ̄ :

{
D −→ N red

M (x)

y 7−→ x+ φ(π̄T (y))− π̄red
N (y).

(3.11)

The next lemma is an analogue of Lemma 3.5.

Lemma 3.10 (Existence of a locally symmetric local equation). The map φ̄ is well-defined, locally
symmetric, and is a local equation of M around x.

Proof. The set D is chosen so that φ is well-defined. Thanks to (2.23) and the fact that
x− π̄red

N (y) ∈ N red
M (x), the range of φ̄ is in N red

M (x). The remainder of the proof follows closely that
of Lemma 3.5. For all y ∈ D, in view of (3.10), (2.21) and Theorem 2.17 we obtain

φ̄(y) = 0 ⇐⇒ π̄red
N (y) = x+ φ(π̄T (y)) ⇐⇒ y = π̄T (y) + φ(π̄T (y)) ⇐⇒ y ∈M∩B(x, δ).

The Jacobian of φ̄ at y is a linear map from TM(x)⊕N red
M (x) to N red

M (x), given by

Jφ̄(y)[h] = Jφ(π̄T (y))[πT (h)]− πred
N (h).

Clearly, for h ∈ N red
M (x) we have Jφ̄(x)[h] = −h showing that the Jacobian Jφ̄ at x is onto and has

a full rank. Thus, φ̄ is a local equation of M around x. Finally, for any σ ∈ Σn
x and any y ∈ D,

Theorem 2.17 shows that φ(π̄T (σy)) = φ(σπ̄T (y)) = φ(π̄T (y)). Together with Lemma 3.9, the local
symmetry of φ̄ follows.

We introduce the spectral function Φ̄ associated with φ̄

Φ̄ :

{
λ−1(D) −→ N red

M (x)

X 7−→ (φ̄ ◦ λ)(X) = x+ φ(π̄T (λ(X)))− π̄red
N (λ(X)).

(3.12)

By construction, we get that the zeros of Φ̄ characterize M, since

X ∈ λ−1(M∩B(x, δ)) ⇐⇒ λ(X) ∈M∩B(x, δ) ⇐⇒ Φ̄(X) = 0. (3.13)

At this stage, let us compare (3.12) with (3.4) and the particular treatment in Section 3.1. In
Section 3.1 we had NM(x) ⊆ ∆⊥⊥Px

yielding N red
M (x) = NM(x) and thus D = B(x, δ1, δ2), an open

subset of Rn. Unfortunately, in the general case, there is an extra difficulty, which stems from the
fact that D is not open in Rn and consequently the function Φ̄ is defined on a subset λ−1(D) of
Sn, of lower dimension. For this reason, the plan of action is as follows.

1. Transfer of local approximation. Show that the set λ−1(D) is an analytic manifold locally
around X ∈ λ−1(x) and calculate its dimension;

2. Transfer of local equation. Show that the function Φ̄ defined on λ−1(D) is differentiable with
derivative at X of full rank (as a linear map on the tangent space of λ−1(D)).

16



3.3 Transfer of the local approximation

The goal of this section is to show that locally around X ∈ λ−1(x) the set λ−1(D) is an analytic
submanifold of Sn. We do this in two steps: the first step consists of showing that the F -part and

the M -part of D give rise to two analytic submanifolds in the spaces S
|N1

n|
PF
x

and S
|N2

n|
PM
x

correspondingly.

The second step shows that ‘intertwining’ the two parts preserves this property in the space Sn.
Suppose the partition Px = PFx ∪ PMx has sets

PFx = {I1, . . . , Iκ} and PMx = {Iκ+1, . . . , Iκ+m}. (3.14)

Lemma 3.11 (Decomposition of D). The affine manifold D can be decomposed as follows

D =
{
yF ⊗ yM : yF ∈ DF , yM ∈ DM

}
,

where DF and DM are affine manifolds defined by:

DF :=
(
[T red
M (x)]F ⊕∆PF

x

)
∩ B(xF , δ1), and

DM := ∆PM
x
∩B(xM , δ2),

where [T red
M (x)]F is the F -part of the reduced space T red

M (x). The sets DF and DM are locally
symmetric and

dimDF = d+ nred −m.

Proof. Recalling the definition of T red
M (x̄) and using (2.16) and the right part of (2.13), one sees

that for every y = yF ⊗ yM ∈ T red
M (x) we have yM = 0. Using the left part of (2.13) with P = Px,

combined with Proposition 3.8 yields

D =
{
yF ⊗ yM : yF ∈

(
[T red
M (x)]F ⊕∆⊥⊥PF

x

)
∩B(xF , δ1), yM ∈ ∆⊥⊥PM

x
∩B(xM , δ2)

}
=
{
yF ⊗ yM : yF ∈

(
[T red
M (x)]F ⊕∆PF

x

)
∩B(xF , δ1), yM ∈ ∆PM

x
∩B(xM , δ2)

}
,

where we used the fact that the ball B(xF , δ1) intersects only strata ∆PF with PF � PFx and
similarly for the ball B(xM , δ2).

The desired expressions for DF and DM follow. By Proposition 3.8, the set D is invariant
under all permutations in Σn

x. Thus, by Proposition 2.15 (ii), being the F -part and the M -part of
D, the sets DF and DM are invariant with respect to the permutations preserving PFx and PMx ,
respectively. We now compute the dimension of DF . Observe that Proposition 3.8 yields

x+ TM(x) ⊕ N red
M (x) = T red

M (x) ⊕ ∆⊥⊥Px
=
(
[T red
M (x)]F ⊕∆⊥⊥PF

x

)
⊗
(
{0} ⊕∆⊥⊥PM

x

)
,

where the zero vector is of dimension |N2
n|. Thus, using (3.9), (3.7), and the fact that dim ∆⊥⊥

PM
x

= m,

we get d + nred = dimDF + dim ∆⊥⊥
PM
x

, completing the proof.

In the following two lemmas, we show that the two parts of D lift up to two manifolds λ−1
PM
x

(
DM

)
and λ−1

PF
x

(
DF
)
. Let us start with the easier case concerning the M -part.

Lemma 3.12 (The analytic manifold SM ). The set SM := λ−1
PM
x

(
DM

)
is an analytic submanifold

in S
|N2

n|
PM
x

with codimension
m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)

2
−m.
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Proof. Vectors in ∆PM
x

have equal coordinates within each block Iκ+i. Each block lifts to a

multiple of the identity matrix (of appropriate dimension). Since the lifting λ−1
PM
x

is block-wise,

SM is a direct product of multiples of identity matrices. Hence it is an analytic submanifold with
dimension m.

Lemma 3.13 (The analytic manifold SF ). The set SF := λ−1
PF
x

(DF ) is an analytic submanifold in

S
|N1

n|
PF
x

with codimension |N1
n| − (d+ nred −m).

Proof. By Lemma 3.11, DF is a locally symmetric, affine submanifold of RN1
n . Our aim is to

show that the characteristic partition of DF is idN1
n
. Then applying Theorem 3.7 to DF shows that

SF is an analytic submanifold of codimension |N1
n| − (d+ nred −m).

To this end, fix ε > 0 and let ω ∈ TM(x̄) ∩ B(0, ε) be a vector with the properties stated in
Lemma 2.16. That is, vector wF ∈ RN1

n is such that every subvector wFIi has distinct coordinates

for all i ∈ Nκ. By (2.14), there is a unique representation ω = ω⊥ + ω⊥⊥ for some ω⊥ ∈ T red
M (x)

and ω⊥⊥ ∈ TM(x) ∩∆⊥⊥Px
. Taking the F -parts, we have ωF = ωF⊥ + ωF⊥⊥ with

ωF⊥ ∈ [T red
M (x̄)]F and ωF⊥⊥ ∈ ∆⊥⊥PF

x
.

Recall that PFx = {I1, . . . , Iκ} and write ωF⊥ = ωF − ωF⊥⊥. Since subvector ωFIi has distinct coor-

dinates, while (ωF⊥⊥)Ii has equal coordinates, we conclude that the subvector (ωF⊥)Ii has distinct
coordinates, for all i ∈ Nκ.

Consider now DF . Fix any xF ∈ ∆PF
x
∩B(xF , δ1). Taking ω close to 0 ensures that ωF⊥ is close

to 0 and that all of the coordinates of the vector ωF⊥+xF are distinct, and moreover ωF⊥+xF ∈ DF .
All that shows

DF ∩∆idN1n
6= ∅.

Thus, the characteristic partition of the affine manifold DF is idN1
n

as asserted.

We will establish that λ−1(D), the intended domain of the local equation of λ−1(M), is an
analytic manifold, by merging the results of the two preceding lemmas with the help of the following
technical result.

Proposition 3.14 (Local canonical split of Sn induced by Px). Let x ∈ M∩Rn
≥. There exist an

open neighborhood W ⊂ Sn of X ∈ λ−1(x) and two analytic maps

ΘF : W → S
N1
n

PF
x

and ΘM : W → S
N2
n

PM
x
,

such that

(i) λ(Y ) = λPF
x

(ΘF (Y ))⊗ λPM
x

(ΘM (Y )) for all Y ∈W ;

(ii) the Jacobians of the analytic maps ΘF and ΘM have full ranks at X.

Proof. We apply to each set in the partition Px = {I1, . . . , Im} a classical result on eigenvalues
(see Example 3.98 in [2]) that we recall here. Let X ∈ Sn have eigenvalues

λ1(X) ≥ · · · ≥ λk−1(X) > λk(X) = · · · = λk+r−1(X) > λk+r(X) ≥ · · · ≥ λn(X).

Then, there exist an open neighborhood W ⊂ Sn of X and an analytic map Θ: W → Sr such that
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(i) for all Y ∈W , we have {λk(Y ), . . . , λk+r−1(Y )} = {λ1(Θ(Y )), . . . , λr(Θ(Y ))};

(ii) the Jacobian of Θ has full rank at X.

Recall now that each set I` contains consecutive integers and assume without loss of generality
that Px is an ordered partition. That is, for all 1 ≤ `1 < `2 ≤ m we have that i ∈ I`1 , j ∈ I`2 implies
i < j, in other words λi(X) > λj(X). Apply the above result to each I` to get open neighborhood
W` ⊂ Sn of X and analytic map Θ` : W` → S|I`| having a full rank Jacobian. Set W =

⋂m
`=1W`

and put the F -pieces and the M -pieces together, that is, define the direct products

ΘF := ×{Θ` : I` ∈ PFx } and ΘM := ×{Θ` : I` ∈ PMx },

restricting each Θ` to W . The order of multiples in the direct products follows the order of the
sets I` in Px. Observe that the above functions satisfy the desired properties.

Theorem 3.15 (λ−1(D) is a submanifold of Sn). The set λ−1(D) is an analytic submanifold of Sn

around X ∈ λ−1(x), with dimension

dimλ−1(D) =
n(n+ 1)

2
+ d+ nred − |N1

n| −
m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)

2
. (3.15)

Proof. By Proposition 3.14, there is a neighborhood W ⊂ Sn of X and analytic maps ΘF and
ΘM such that

λ(Y ) = λPF
x

(ΘF (Y ))⊗ λPF
x

(ΘM (Y )) for all Y ∈W. (3.16)

Set XF := ΘF (X) ∈ S
|N1

n|
PF
x

and XM := ΘM (X) ∈ S
|N2

n|
PM
x

. Then, (3.16) gives that x = λ(X) =

λPF
x

(XF )⊗λPM
x

(XM ), and hence xF = λPF
x

(XF ) and xM = λPM
x

(XM ), concluding that XF ∈ SF

and XM ∈ SM (recall Lemma 3.13 and Lemma 3.12). Consider the respective codimensions

s1 := co-dimSF = |N1
n| − (d+ nred −m), and (3.17)

s2 := co-dimSM =
m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)

2
−m. (3.18)

Since the maps ΘF and ΘM have Jacobians of full rank at X, they are open around it. By shrinking
W if necessary, we may assume there exist analytic maps

ΨF : ΘF (W )→ Rs1 and ΨM : ΘM (W )→ Rs2 ,

with Jacobians having full rank at XF and XM respectively, such that

ΨF (Y ) = 0 ⇔ Y ∈ SF ∩ΘF (W ) and ΨM (Y ) = 0 ⇔ Y ∈ SM ∩ΘM (W ).

We now define a local equation for λ−1(D) around X as follows:

Ψ:

{
W −→ Rs1 ×Rs2

X 7−→ (ΨF ◦ΘF )(X)× (ΨM ◦ΘM )(X).

Indeed, using (3.16), for all Y ∈W we have

Ψ(Y ) = 0 ⇐⇒ λ(Y ) = λPF
x

(ΘF (Y ))⊗ λPM
x

(ΘM (Y )) ∈ D ⇐⇒ Y ∈ λ−1(D).
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The fact that the Jacobian of Ψ has full rank atX follows from the chain rule and the fact that all the
Jacobians JΘF (X), JΘM (X), JΨF (XF ), and JΨM (XM ) are of full rank. Thus, Ψ is an analytic
local equation of λ−1(D) around X, which yields that λ−1(D) is a submanifold Sn around X. We
compute its dimension as follows

dimλ−1(D) = dim Sn −
(
co-dimSF + co-dimSM

)
=
n(n+ 1)

2
+ d+ nred − |N1

n| −
m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)

2
,

where (3.17) and (3.18) were used.

Theorem 3.15 is an important intermediate result for the forthcoming Section 3.4, which contains
the final step of the proof. Nonetheless, in the following particular case, Theorem 3.15 allows us to
conclude directly.

Example 3.16 (Lift of strata). Fix a partition P ◦ ∈ Πn. Then, the set

M := ∆P ◦ ∪
( ⋃
P≺∼P ◦

∆P

)
is a locally symmetric manifold with characteristic permutation P ◦, see [7]. Suppose in addition
that the sets in P ◦ contain consecutive integers, then M∩Rn

≥ 6= ∅. For any x ∈M∩Rn
≥ we have

N red
M (x) = {0}, that is nred = 0. This means that the affine manifolds M and D coincide locally

around x, see (3.8). In this case Theorem 3.15 shows directly that λ−1(M) is a manifold in Sn with
dimension given by (3.15). At first glance, it appears that the dimension depends on the particular
choice of x. But since Px = P◦ or Px ≺∼ P◦, by Proposition 2.15 (ii) we have PMx = PM◦ =:
{I◦κ+1, . . . , I

◦
κ+m}. Let PF◦ = {I◦1 , . . . , I◦κ}. Using that n = |N1

n| + |N2
n| =

∑κ
i=1 |I◦i | +

∑κ+m
i=κ+1 |I◦i |,

one can verify that (3.15) becomes

dimλ−1(M) = d+
∑

1≤i<j≤κ+m

|I◦i ||I◦j |.

Thus, according to (3.1), we have dimλ−1(M) = dimλ−1(∆P◦). This is a particular case of the
forthcoming general formula (3.21).

In the situation of Example 3.16 the manifold M has a trivial reduced normal space. The
following remark sheds more light on this aspect.

Remark 3.17 (Trivial reduced normal space). Let M be a locally symmetric manifold, with
characteristic partition P∗ and let x ∈M∩Rn

≥. Then, by (2.21) and (2.23), it can be seen that

N red
M (x) = {0} ⇐⇒ M∩B(x, δ) = (x+ TM(x)) ∩B(x, δ) for some δ > 0.

Inclusion (2.9) shows that x ∈ ∆⊥⊥P∗ and together with (2.10) we get that (x + TM(x)) ⊂ ∆⊥⊥P∗ .
Thus, we obtain

N red
M (x) = {0} ⇐⇒ M∩B(x, δ) = ∆⊥⊥P∗ ∩B(x, δ) for some δ > 0.
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3.4 Transfer of local equations, proof of the main result

This section contains the last step of our argument. We show that (3.12) is indeed a local
equation of M around X ∈ λ−1(x).

Lemma 3.18 (The Jacobian of Φ̄). The map Φ̄ defined in (3.12) is of class Ck at X ∈ λ−1(x).
Denoting the differential of Φ̄ at X by

DΦ̄(X) : Tλ−1(D)(X) −→ N red
M (x),

we have for any direction H ∈ Tλ−1(D)(X):

DΦ̄(X) [H] = Dφ (π̄T (λ(X))) [πT (diag(U H U>))] − πred
N (diag(U H U>)), (3.19)

where U ∈ On is such that X = U>(Diag λ(X))U .

Proof. We deduce from Theorem 2.17 that for any σ ∈ Σn
x and y ∈ D we have

(φ ◦ π̄T )(σy) = (φ ◦ π̄T )(y). (3.20)

In addition, the gradient of the i-th coordinate function φi ◦ π̄T at x applied to any direction
h ∈ TD(x) = T red

M (x)⊕∆⊥⊥Px
, see Proposition 3.8, yields

∇ (φi ◦ π̄T )(x)[h] = ∇φi(π̄T (x))[πT (h)].

Thus, by Theorem 2.2, we obtain the following expression for the gradient at X of the function
φi ◦ π̄T ◦ λ applied to the direction H ∈ Tλ−1(D)(X)

∇ (φi ◦ π̄T ◦ λ)(X)[H] = ∇φi (π̄T (λ(X))) [πT (diag (UHU>))] for i ∈ Nn,

where U ∈ On is such that X = U>(Diag λ(X))U . By Lemma 3.9, the projection π̄red
N is locally

symmetric at x. Thus, by (2.4) we have

J(π̄red
N ◦ λ)(X)[H] = Jπ̄red

N (λ(X))[diag(UHU>)] = πred
N (diag (UHU>)).

Formula (3.19) is obtained.

Next, we show that the differential of Φ̄ at X is of full rank. We accomplish this without
actually computing the tangent space of the manifold λ−1(D) at X. Instead we show that the
tangent space is sufficiently rich to guarantee surjectivity.

Lemma 3.19 (Surjectivity of DΦ̄(X)). The differential of Φ̄ at X

DΦ̄(X) : Tλ−1(D)(X) −→ N red
M (x)

is onto. Hence, it has a full rank.

Proof. Let U ∈ On be such that X = U>(Diag λ(X))U . The tangent space of On at U is

{UA : A is an n× n skew-symmetric matrix}.

Thus, for any n × n skew symmetric matrix A there exists an analytic curve t 7→ U(t) ∈ On such
that

U(0) = U and U̇(0) :=
d

dt
U(0) = UA.
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Fix now any vector h ∈ N red
M (x). Consider the curve t 7→ U(t)>(Diag (x+ th))U(t). For all values

of t close to zero, this curve lies in λ−1(D) because x+ th lies in D. Introduce the vector xt made
of the entries of x+ th reordered in decreasing way. Since the space N red

M (x) is invariant under all
permutations σ ∈ Σn

x we see that xt lies in x + N red
M (x), for t close to zero. The derivative of this

curve at t = 0 (i.e. a tangent vector in Tλ−1(D)(X)) is

H := U̇(0)
>

(Diag x)U(0) + U(0)>(Diag h)U(0) + U(0)>(Diag x)U̇(0)

= −AU>(Diag x)U + U>(Diag h)U + U>(Diag x)UA,

using that A> = −A. Substituting the above expression of H into (3.19), and using the fact that
UU> = U>U = I and that UAU>(Diag x) and (Diag x)UAU> have the same diagonal we obtain

DΦ̄(X)[H] = −h.

This shows that DΦ̄(X) is surjective onto N red
M (x), completing the proof.

Theorem 3.20 (The main result). Let M be a locally symmetric Ck submanifold of Rn of dimen-
sion d. Then λ−1(M) is a Ck submanifold of Sn of dimension

dimλ−1(M) = d +
∑

1≤i<j≤m∗
|I∗i ||I∗j |, (3.21)

where P∗ = {I∗1 , . . . , I∗m∗} is the characteristic partition of M. Here k ∈ {2, 3, . . . ,∞, ω}.

Proof. Fix any x ∈ M ∩Rn
≥ and X ∈ λ−1(x) and consider the spectral function Φ̄ introduced

in (3.12). Equation (3.13) shows that Φ̄ is a local equation of M. Lemmas 3.18 and 3.19 prove
that Φ̄ is a Ck local equation of λ−1(M) around X. Thus, λ−1(M) is a Ck submanifold of Sn

around X. Moreover, the dimension of λ−1(M) is

dimλ−1(M) = dimλ−1(D) − dim(N red
M (x)).

Suppose that (3.14) holds. By Proposition 2.15 (ii), we have that PMx = PM∗ . So suppose that
Iκ+i = I∗m∗−m+i for all i = 1, . . . ,m. Recall that n = |N1

n|+ |N2
n| and that

∑m
i=1 |Iκ+i| = n− |N1

n|.
Using (3.6) and Theorem 3.15, we get

dimλ−1(M) = d+
n(n+ 1)

2
− |N1

n| −
m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)

2

= d+
n2

2
− |N

1
n|

2
−

m∑
i=1

|Iκ+i|2

2

= d+
n2

2
− |N

1
n|

2
− 1

2

( m∑
i=1

|I∗m∗−m+i|
)2

+
∑

1≤i<j≤m
|I∗m∗−m+i||I∗m∗−m+j |

= d+
|N1
n|(|N1

n| − 1)

2
+ |N1

n|(n− |N1
n|) +

∑
1≤i<j≤m

|I∗m∗−m+i||I∗m∗−m+j |

= d+
∑

1≤i<j≤m∗
|I∗i | |I∗j |,

the last equality uses the fact that all the sets in PF∗ = {I∗1 , . . . , I∗m∗−m} have size one.
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Notice that the dimension (3.21) of λ−1(M) depends only on the dimension of the underlying
manifold M and its characteristic permutation P∗. This is not the case with the dimension (3.15)
of λ−1(D) which also depends on the active partition Px (by nred, κ and m).

Remark 3.21 (Comment for the case of C1-manifolds). The case of a locally symmetric C1

manifold M is compromised by [7, Lemma 3.13] (Determination of isometries), which uses the
intrinsic Riemannian structure ofM, requiring thus, a C2 regularity. Lemma 3.13 from [7] had been
subsequently used to obtain the reduction of the ambient space for the tangential parametrization
of M, which has been one of the main ingredients in establishing Theorem 2.17.

Let us now give a few applications of the main result. It is known that the set of all symmetric
matrices in Sn of rank k is an analytic manifold, see for example [9, Proposition 1.14, p.133]. This
also follows from our main result, together with the formula for its dimension.

Example 3.22 (Matrices of constant rank). Suppose M = {x ∈ Rn : x has exactly n− k zeros},
then λ−1(M) = {A ∈ Sn : rankA = k}. Fix a subset J of {1, 2, ..., n} with n − k consecutive
elements and define M′ := {x ∈ Rn : xi = 0, i ∈ J}, a connected component of M. Then,
dimM′ = k and the characteristic partition of M′ is P∗ = {i : i ∈ J} ∪ {{i} : i 6∈ J}. By
Theorem 3.20, λ−1(M) is an analytic submanifold of Sn with dimension

dimλ−1(M) = dimλ−1(M′) = k +
k(k − 1)

2
+ k(n− k) =

k(2n− k + 1)

2
.

In particular, the dimension of rank-one matrices (k = 1) is n, while the dimension of the invertible
matrices (k = n) is

(
n
2

)
.

Example 3.23 (The unit shpere). Consider the unit sphere in Rn:

M := {x ∈ Rn : x2
1 + · · ·+ x2

n = 1}.

It is a symmetric analytic manifold of dimension n− 1 and characteristic partition P∗ = {{i} : i =
1, . . . , n}. By Theorem 3.20, λ−1(M) is an analytic submanifold of Sn with dimension

dimλ−1(M) = (n− 1) +

(
n

2

)
=

(
n+ 1

2

)
− 1.

Indeed, it is easy to see that

λ−1(M) = {A ∈ Sn : ‖λ(A)‖ = 1} = {A ∈ Sn : ‖A‖ = 1}.

That is, λ−1(M) is the unit sphere in Sn.

Remark 3.24 (The case |N1
n| ∈ {0, 1}). If M is a connected, submanifold of Rn of dimension d,

such that |N1
n| ∈ {0, 1}, then M⊂ ∆P∗ . The same arguments as in Example 3.1 allow to conclude

that λ−1(M) is a spectral manifold of dimension given by (3.1).
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