Continuity and differentiability of set-valued maps
revisited in the light of tame geometry
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Abstract Continuity of set-valued maps is hereby revisited: after recalling some basic concepts of vari-
ational analysis and a short description of the State-of-the-Art, we obtain as by-product two Sard type
results concerning local minima of scalar and vector valued functions. Our main result though, is in-
scribed in the framework of tame geometry, stating that a closed-valued semialgebraic set-valued map
that does not necessarily have closed graph is almost everywhere continuous (in both topological and
measure-theoretic sense), strictly continuous and strictly differentiable (as set-valued map). The result
—depending on stratification techniques— holds true in a more general setting of o-minimal (or tame)
set-valued maps. Some applications are briefly discussed at the end.
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1 Introduction

We say that S is a set-valued map (we also use the term multivalued function or simply multifunction)
from X to Y, denoted by S: X =2 Y, if for every x € X, S(x) is a subset of Y. All single-valued maps
in classical analysis can be seen as set-valued maps, while many problems in applied mathematics are



set-valued in nature. For instance, problems of stability (parametric optimization) and controllability
are often best treated with set-valued maps, while gradients of (differentiable) functions, tangents and
normals of sets (with a structure of differentiable manifold) have natural set-valued generalizations in
the nonsmooth case, by means of variational analysis techniques. The inclusion y € S(x) is the heart of
modern variational analysis. We refer the reader to [1, 31] for more details.

Continuity and differentiability properties of set-valued maps are crucial in many applications, see
for instance [10, 23]. A typical set-valued map arising from some construction or variational problem
will not be continuous. Nonetheless, one often expects the maps to be outer semicontinuous. This
however fails in some applications including generalized semi-infinite programming, see [15]. (We refer
to Section 2 for the different notions of continuity of set-valued maps.)

A standard application of a Baire argument entails that closed-valued set-valued maps are generically
continuous, provided they are either inner or outer semicontinuous. Recalling briefly these results, as well
as other concepts of continuity for set-valued maps, we illustrate their sharpness by means of appropriate
examples. We also mention an interesting consequence of these results by establishing a Sard-type result
for the image of local minima.

Moving forward, we limit ourselves to semialgebraic maps [3, 8] or more generally, to maps whose
graph is a definable set in some o-minimal structure [12, 9]. This setting aims at eliminating most
pathologies that pervade analysis which, aside from their indisputable theoretical interest, do not appear
in most practical applications. The definition of a definable set might appear reluctant at a first sight
(in particular for researchers in applied mathematics), but it determines a large class of objects (sets,
functions, maps) encompassing for instance the well-known class of semialgebraic sets [3, 8], that is,
the class of Boolean combinations of subsets of R” defined by finite polynomials and inequalities. All
these classes enjoy an important stability property —in the case of semialgebraic sets this is expressed
by the Tarski-Seidenberg (or quantifier elimination) principle— and share the important property of
stratification: every definable set (so in particular, every semialgebraic set) can be written as a disjoint
union of smooth manifolds which fit each other in a regular way (see Theorem 25 for a precise statement).
This tame behaviour has been already exploited in various ways in variational analysis, see for instance
[2] (convergence of proximal algorithm), [4] (Lojasiewicz gradient inequality), [5] (semismoothness),
[19] (Sard-Smale type result for critical values) or [20] for a recent survey of what is nowadays called
tame optimization.

The main result of this work is to establish that every semialgebraic (more generally, definable)
closed-valued set-valued map S coincides with its closure cl(S) in a generic set. Based on this result, we
deduce that S is both continuous and strictly continuous in a (smaller) generic set. A further adjustment
of the argument shows that § is also strictly differentiable (as set-valued map) in a generic set. Let us
point out that in this semialgebraic context, genericity implies that possible failures can only arise in a
set of lower dimension, and thus is equivalent to the measure-theoretical notion of almost-everywhere
(see Proposition 27 for a precise statement). The proof uses properties of stratification, some technical
lemmas of variational analysis and a recent result of loffe [19].

The paper is organized as follows. In Section 2 we recall basic notions of variational analysis and
revisit results on the continuity of set-valued maps. As by-product of our development we obtain, in
Section 3 two Sard-type results: the first one concerns minimum values of (scalar) functions, while the
second one concerns Pareto minimum values of set-valued maps. We also grind our tools by adapting the
Mordukhovich criterion to set-valued maps with domain a smooth submanifold 2~ of R”. In Section 4
we move into the semialgebraic case. Adapting a recent result of loffe [19, Theorem 7] to our needs,
we prove an intermediate result concerning generic strict continuity of set-valued maps with a closed
semialgebraic graph. Then, relating the failure of continuity of the mapping with the failure of its trace
on a stratum of its graph, and using two technical lemmas we establish our main result. Section 5 contains



some applications of the main result.

Notation. Denote B” (x, §) to be the closed ball of center x and radius r in R”, and S"~! (x,r) to be
the sphere of center x and radius r in R”. When there is no confusion of the dimensions of B” (x,r) and
S"!(x,r), we omit the superscript. The unit ball B (0, 1) is denoted by B. We denote by 0, the neutral
element of R”. As before, if there is no confusion on the dimension we shall omit the subscript. Given
a subset A of R" we denote by cl(A), int(A) and dA respectively, its topological closure, interior and
boundary. For A;,A> C R" and r € R we set

Al +rAy = {Cl] +ray:a; €Ar,ap EAz}.

We recall that the Hausdorff distance Z(A;,A;) between two bounded subsets Aj,A, of R” is defined
as the infimum of all 6 > 0 such that both inclusions A; C A, + 8B and A C A; + 6B hold (see [31,
Section 9C] for example). Finally, we denote by

Graph(S) ={(x,y) e X xY :yeS(x)},

the graph of the set-valued map S: X =2 Y.

2 Basic notions in set-valued analysis

In this section we recall the definitions of continuity (outer, inner, strict) for set-valued maps, and other
related notions from variational analysis. We refer to [1, 31] for more details.

2.1 Continuity concepts for set-valued maps

We start this section by recalling the definitions of continuity for set-valued maps.

(Limits of sequences) We first recall basic notions about limits of sets. Given a sequence {Cy },
of subsets of R" we define:

* the outer limit limsup,_,,, Cy, as the set of all accumulation points of sequences {xy }yeny C R”
with x, € Cy for all v € N. In other words, x € limsup,,_,.,Cy if and only if for every € > 0 and
N > 1 there exists v > N with C, N B(x,€) # 0 ;

o the inner limit liminf,_, Cy, as the set of all limits of sequences {xy }yen C R" with x,, € Cy, for
all v € N. In other words, x € liminf,_... Cy if and only if for every € > 0 there exists N € N such
that for all v > N we have C, N B(x, &) # 0.

Furthermore, we say that the /imit of the sequence {Cy }, . exists if the outer and inner limit sets are
equal. In this case we write:
lim Cy := limsupCy = liminfC,,.
V—o00 Voo V—o0
(Outer/inner continuity of a set-valued map) Given a set-valued map S : R" = R, we define
the outer (respectively, inner) limit of S at ¥ € R”" as the union of all upper limits limsup,, .S (xy)
(respectively, intersection of all lower limits liminf,_... S (xy)) over all sequences {xy } . converging to
X. In other words:

limsup S (x) := U limsup S (xy) and liminf S (x) := ﬂ liminf S (xy) .
V—o0

x—x V—o0 X=X

Xy—X Xy—X

We are now ready to recall the following definition.



Definition 1. [31, Definition 5.4] A set-valued map § : R” = R™ is called outer semicontinuous at x if

limsup S (x) C S(¥),

X—X

or equivalently, limsup,_; S (x) = S (%), and inner semicontinuous at x if
liminf S (x) D §(%),
X—X

or equivalently when S is closed-valued, liminf, .zS(x) = S(x). It is called continuous at X if both
conditions hold, i.e., if S (x) — S (%) as x — X.

If these terms are invoked relative to X, a subset of R” containing X, then the properties hold in
restriction to convergence x — X with x € X (in which case the sequences x, — X in the limit formulations
are required to lie in X).

Notice that every outer semicontinuous set-valued map has closed values. In particular, it is well
known that

* S is outer semicontinuous if and only if S has a closed graph.
When S is a single-valued function, both outer and inner semicontinuity reduce to the standard notion
of continuity. The standard example of the mapping

S(x) = @2.1)

0 if x is rational
1 if x is irrational

shows that it is possible for a set-valued map to be nowhere outer and nowhere inner semicontinuous.
Nonetheless, the following genericity result holds. (We recall that a set is nowhere dense if its closure has
empty interior, and meager if it is the union of countably many sets that are nowhere dense in X.) The
following result appears in [31, Theorem 5.55] and [1, Theorem 1.4.13] and is attributed to [22, 7, 33].
The domain of S below can be taken to be a complete metric space, while the range can be taken to be a
complete separable metric space, but we shall only state the result in the finite dimensional case.

Theorem 2. Let X C R" and S : R" = R™ be a closed-valued set-valued map. Assume S is either outer
semicontinuous or inner semicontinuous relative to X. Then the set of points x € X where S fails to be
continuous relative to X is meager in X.

The following example shows the sharpness of the result, if we move to incomplete spaces.

Example 3. Let coo(N) denote the vector space of all real sequences x = {x, },en with finite support
supp(x) := {i € N:x; # 0}. Then the operator S} (x) = supp(x) is everywhere inner semicontinuous and
nowhere outer semicontinuous, while the operator S»(x) = Z\ S} (x) is everywhere outer semicontinuous
and nowhere inner semicontinuous. O

(Strict continuity of set-valued maps) A stronger concept of continuity for set-valued maps is that
of strict continuity [31, Definition 9.28], which is equivalent to Lipschitz continuity when the map is
single-valued. For set-valued maps S : R” = R” with bounded values, strict continuity is quantified
by the Hausdorff distance. Namely, a set-valued map S is strictly continuous at x (relative to X) if the

quantity
P2 (S(x),S(x
lipyS(%X) := limsup M
xx —x |
x#xX
is bounded. In the general case (that is, when S maps to unbounded sets), we say that S is strictly
continuous at X if for each p > 0, there exists k > 0 and a neighborhood V' of & such that S(x) N pB C

S(x') + k|x—x'|B for all x,x’ € V.

|x —x



2.2 Normal cones, coderivatives and the Aubin property

Before we consider other concepts of continuity of set-valued maps we need to recall some basic concepts
from variational analysis. We first recall the definition of the Fréchet and limiting normal cones.

Definition 4. (Normal cones) [31, Definition 6.3] For a closed set D C R" and a point Z € D, we recall
that the Fréchet normal cone Np (Z) and the limiting normal cone Np () are defined by

Np (2) == {v| {(vz~2) <o(]z—2|) forze D},
Np (2) := {v|3{zi,vi} =, C Graph(Np), vi — v and z; — Z}
= limsup Np (z).

7—Z,2€D

When D is a smooth manifold, both notions of normal cone coincide and define the same subspace of
R”. A dual concept to the normal cone is the tangent cone Tp (Z). While tangent cones can be defined
for nonsmooth sets, our use here shall be restricted only to tangent cones of manifolds, that is, tangent
spaces in the sense of differential geometry, in which case Tp (Z) = (Np (2))*.

As is well-known, the generalization of the adjoint of a linear operator for set-valued maps is derived
from the normal cones of its graph.

Definition 5. (Coderivatives) [31, Definition 8.33] For F : R* = R™ and (X,y) € Graph (F), the limiting
coderivative D*F (% | ) : R™ = R" is defined by
D* F {X ’ eIVGraph( )(_7)7)}

It is clear from the definitions that the coderivative is a positively homogeneous map, which can be
measured with the outer norm below.

Definition 6. [31, Section 9D] The outer norm |-|* of a positively homogeneous map H : R” = R" is
defined by

= sup sup e =sup{ [ (02) € Graph i)}
WeB (0,1) zeH(w) wl

(Aubin property and Mordukhovich criterion) We now recall the Aubin Property and the graphical
modulus, which are important to study local Lipschitz continuity properties of a set-valued map.

Definition 7. (Aubin property and graphical modulus) [31, Definition 9.36] A map S : R* = R™ has the
Aubin property relative to X at X for ii, where X € X C R" and i € S (%), if Graph (§) is locally closed at
(%,1) and there are neighborhoods V of X and W of i, and a constant k¥ € R such that

S(X)NW C S(x)+K|x —x|B forall x,x' € XNV.

This condition with V in place of X NV is simply the Aubin property at X for ii. The graphical modulus
of S relative to X at X for i1 is then

lipy S (x | &) := inf{x | 3 neighborhoods V of X and W of i s.t.
S()NW CS(x)+ K |x' —x| B forall x,x’ € XNV}.

In the case where X = R”, the subscript X is omitted.



Let us recall ([31, Theorem 9.38]) that for an outer semicontinuous map S, we have that S is strictly
continuous at x if and only if for every u € S(x), it has the Aubin property at x for u. The following result
(known as Mordukhovich criterion [31, Theorem 9.40]) characterizes the Aubin property by means of
the corresponding coderivative. (A preliminary version of this regularity criterion goes back to [18,
Corollary 8.5]. For a primal characterization using the graphical derivative see [13, Theorem 1.2].)

Proposition 8 (Mordukhovich criterion). Let S : R" = R™ be a set-valued map whose graph Graph (S)
is locally closed at (%,i) € Graph (S). Then S has the Aubin property at X with respect to i if and only if
D*S(x| @)(0) = {0} or equivalently |D*S(x | ii)| " < oo. In this case, lipS (¥ | i) = |D*S(x | i)|".

Using the above criterion we show that an everywhere continuous strictly increasing single-valued
map from the reals to the reals could be nowhere Lipschitz continuous.

Example 9. Let A C R be a measurable set with the property that for every a,b € R, a < b, the Lebesgue
measure of AN (a,b) satisfies 0 < m(ANJa,b]) < |b—al. Consider the function f : [0,1] — R defined
by f(x) =m(AN(0,x)). Note that the derivative f’ (x) exists almost everywhere and is equal to x4 (x),
the characteristic function of A (equal to 1 if x € A and 0 if not). This means that every point X € [0, 1] is
arbitrarily close to a point x where f’(x) is well-defined and equals zero. Thus (0, 1) € Ngraph(s) (%, £ (%))
The function f is strictly increasing and continuous, so it has a continuous inverse g : [0, f (1)] — [0, 1].
Applying the Mordukhovich criterion (Proposition 8) we obtain that g does not have the Aubin property
at f (). It follows that g is not strictly continuous at f (¥) and in fact neither is so at any y € [0, f (1)]. O

2.3 Differentiability for set-valued maps

We provide a short introduction to the generalized differentiation of set-valued maps as elaborated
in [27]. Differentiability of set-valued maps was studied in [28] (semidifferentiability), [30] (proto-
differentiability. See also [1, Chapter 5] for further discussion on the topic. The definition of differen-
tiability for set-valued maps as defined in [27] was first studied for non-smooth analysis of single-valued
functions in [16, 17, 35].

Let us first recall that a map 7 : R" = R™ is positively homogeneous if 0 € T(0) and T'(Ax) = AT (x)
for all A > 0, or equivalently, if Graph(7T') is a cone. Then according to [27] we have the following
definition.

Definition 10 (Strict 7-differentiability). Let X C R”". For a set-valued map S : X = R and a positively
homogeneous map T : R" == R™, we say that S is strictly T-differentiable at x (respectively, pseudo
strictly T-differentiable at X for y) if for every 6 > 0, there is a neighborhood U of ¥ (respectively, and
a neighborhood Vi of ¥) such that for all x,x’ € Us we have

S(x) € SK)+T(x—x)+86x—x|B
(resp. S(x)NVs C SE)+T(x—x)+8x—2|B).

Notice that the positively homogeneous map T in the above definitions need not be unique. For
example, the semi-algebraic map S : R = R? defined by S(x) = {x} x R is pseudo strictly T;-differentiable
everywhere for i = 1,2 for the (linear) maps 7;(x) = (x,0) and T>(x) = (x,x). Further, the localization
around y in the second part of Definition 10, reminiscent of the Aubin property (also known as pseudo-
Lipschitz, to be opposed to the Lipschitz property), justifies the presence of the adjective "pseudo” in the
above terminology. In particular, if S is (pseudo)strictly 7-differentiable with respect to the positively
homogeneous map T : R" = R™ satisfying T'(x) C Kk |x| B, for all x € R" then S is (pseudo)Lipschitz with
modulus k and vice versa.



Moving from positively homogeneous to linear maps, brings us to set-valued differentiability. Before
we state the formal definition, let us first look at the example S : R = R defined by S(x) = [—|x], |x]].
Clearly, S is positively homogeneous (thus strictly S-differentiable), but there is no linear map 7 : R —
R such that S is pseudo strictly 7-differentiable at 1 for 1 and at the same time pseudo strictly 7-
differentiable at 1 for —1. Alternatively, there is no linear map 7 : R — R such that for every é > 0,
there exists a neighborhood Ug of 1 such that

S(x) € S(X)+T(x—x")+ 8|x— x| B for all x,x’ € Us.
This example motivates the following definition of set-valued differentiability.

Definition 11 (Set-valued differentiability). Let X C R”". For a set-valued map S : X =2 R™, we say that
S is pseudo strictly differentiable at x € X for y € S(x) if it is pseudo strictly T-differentiable at x for y
for some linear map 7' : R" =2 R™. We say that S is set-valued differentiable at x if for every y € S(x), S
is pseudo strictly differentiable at x for y (the map 7 depending also on y).

Related to pseudo strict T-differentiability at X for y is the notion of generalized metric regularity.
We recall its definition and state the result relating generalized differentiability and generalized metric
regularity.

Definition 12 (Generalized metric regularity). Let X C R” and S : X = R be a set-valued map where
Graph(S) is locally closed at (%,). Let further 7 : R” = R” be positively homogeneous. We say that S
is T-metrically regular at (%,y) € Graph(S) if for any 6 > 0, there exist neighborhoods V of ¥ and W of
v and r > 0 such that, for any x € V and A C rB, (or equivalently, for any set A C rB containing exactly
one element),

y € (S(x) +A)NW implies x € S~ (y) + (T + 8)(A). (2.2)

Theorem 13 (7-metric regularity and 7-openness). Let S: X C R" =2 R"™ be a set-valued map, T : R =
R” be positively homogeneous map and set T_(y) =T (—y), for all y € R™. The following are equivalent:

(MR) S is T_-metric regular at (X,7) € Graph(S).

(IT) S~' is pseudo strictly T-differentiable at 3 for .

3 Preliminary results in Variational Analysis

In this section we establish a Sard type result for the image of the set of local minima (respectively, local
Pareto minima) in case of single—valued scalar (respectively, vector—valued) functions. We also obtain
several auxiliary results that will be used in Section 4.

3.1 Sard result for local (Pareto) minima

In this subsection we use simple properties on the continuity of set-valued maps to obtain a Sard type
result for local minima for both scalar and vector-valued functions. Let us recall that a (single-valued)
function f : X — R is called lower semicontinuous at x if

liminf f(x) > f(%).

The function f is called lower semicontinuous, if it is lower semicontinuous at every x € X. It is well-
known that a function f is lower semicontinuous if and only if its sublevel sets

[f<r={xeX: flx) <r}

are closed for all r € R.



Proposition 14 (Sublevel map). Let D be a closed subset of a complete metric space X and f : D — R
be a lower semicontinuous function. Then the (sublevel) set-valued map

LflRi?D
Ly(r)=[f<rludD

is outer semicontinuous. Moreover, Ly is continuous at 7 € f (D) if and only if there is no x € int(D)
such that f (x) = 7 and x is a local minimizer of f.

Proof. The map L, : R = D defined by L),(r) = f ~1((—oo,r]) is outer semicontinuous since f is lower
semicontinuous (see [31, Example 5.5] for example), so L is easily seen to be outer semicontinuous.

We now prove that Ly is inner semicontinuous at 7 under the additional conditions mentioned in the
statement. For any r; — 7, we want to show that if X € Ly (), then there exists x; — X such that x; € L¢ (r;).
We can assume that f (X) = 7 and r; < 7 for all 7, otherwise we can take x; = x for i large enough. Since ¥
is not a local minimum, for any € > 0, there exists 0 > 0 such that if |7 — r;| < &, there exists an x; such
thatf(x,-) < r;and ‘)Cl‘ —)Z’ < E.

For the converse, assume now that Ly is inner semicontinuous at 7. Then taking r; /¥ we obtain
that for every x € int(D) N f~! (F), there exists x; € f~! (r;) with x; — x. Since f(x;) =r; <7 = f(x), x
cannot be a local minimum. O

According to the above result, if f has no local minima, then the set-valued map Ly is continuous
everywhere. The above result has the following interesting consequence.

Corollary 15 (Local minimum values). Let My denote the set of local minima of a lower semicontinuous
function f : D — R (where D is a closed subset of a complete space X). Then the set f(MyNint(D)) is
meager in R.

Proof. Since the set-valued map Ly (defined in Proposition 14) is outer semicontinuous (with closed-
values), it is generically continuous by Theorem 2. The second part of Proposition 14 yields the result
on f. O

It is interesting to compare the above result with the classical Sard theorem. We recall that the Sard
theorem asserts that the image of critical points (derivative not surjective) of a C¥ function f : R — R™ is
of measure zero provided k > n—m. (See [32]; the case m = 1 is known as the Sard-Brown theorem [6].)
Corollary 15 asserts the topological sparsity of the (smaller) set of minimum values for scalar functions
(m = 1), without assuming anything but lower semicontinuity (and completeness of the domain).

We shall now extend Corollary 15 in the vectorial case. We recall that a set K C R™ is a cone, if
AK C K forall A > 0. A cone K is called pointed if K N (—K) = {0,,} (or equivalently, if K contains no
full lines). It is well-known that there is a one-to-one correspondence between pointed convex cones of
R™ and partial orderings in R™. In particular, given such a cone K of R” we set y; <k y; if and only if
y2 —y1 € K (see for example, [31, Section 3E]). Further, given a set-valued map S : R* = R™ we say that

e xis a (local) Pareto minimum of S with (local) Pareto minimum value y if there is a neighborhood
U of x such thatif x € U and y € S (x), then y £x y,i.e., S(U)N(F—K) = 7.

For §: R" = R™, define the map Sk : R” = R” by Sk (x) = S (x) + K. The graph of Sk is also known
as the epigraph [14, 21] of S. One easily checks that y € Sk (x) implies y+ K C Sk (x). Here is our result
on local Pareto minimum values.



Proposition 16 (Pareto minimum values). Let S : R" = R™ be an outer semicontinuous map such that
y € S(x) implies y+ K C S(x) (that is, S = Sk). Then the set of local Pareto minimum values is meager.

Proof. Since S is outer semicontinuous, then § ~1is outer semicontinuous as well by [31, Theorem 5.7(a)],
so S~ ! is generically continuous by Theorem 2. Suppose that ¥ is a local Pareto minimum of a local Pareto
minimizer X.

By the definition of local Pareto minimum, there is a neighborhood U of x such that if y <x y and y #
¥, then S~! (y) MU = 0. (We can assume that y is arbitrarily close to 7 since S~ (y) C S~! (Ay+ (1 — 1))
forall 0 <A < 1.) Therefore, X ¢ liminf,_; S~!(y). In other words, S~ is not continuous at y. Therefore,
the set of local Pareto minimum values is meager. a

We show how the above result compares to critical point results. Let us recall from [19] the definition
of critical points of a set-valued map. Given a metric space X (equipped with a distance p) we denote by
By(x,A) the set of all x' € X such that p(x,x") < A.

Definition 17. Let (X, p;) and (Y, p,) be metric spaces, and let S: X = Y. For (x,y) € Graph (S), we set
Sur S(x|y)(A) =sup{r>0|Bp,(y,r) CS(Bp (x,2)}

and then for (¥,y) € Graph (S) define the rate of surjection of S at (x,y) by

1
sur S(x|y) = liminf —SurS(x A).
(®13) = Niminf o SurS(x[y)(4)
We say that S is critical at (%,y) € Graph(S) if surS (¥ | §) = 0, and regular otherwise. Also, y is a
(proper) critical value of S if there exists X such that § € S(X) and S is critical at (,5).

This definition of critical values characterizes the values at which metric regularity is absent. In
the particular case where S : R” — R is a ¢! function, critical points correspond exactly to where the
Jacobian has rank less than m. We refer to [19] for more details.

One easily sees that if y is a Pareto minimum value of S, then there exists x € X such that (x,y) €
Graph (S), and Sur S (x| y) (1) = 0 for all small A > 0. This readily implies that y is a critical value.

3.2 Extending the regularity criterion and a critical value result

The two results of this subsection are important ingredients of the forthcoming proof of our main theo-
rem. The first result we need is an adaptation of the Mordukhovich criterion (Proposition 8) to the case
where the domain of a set-valued function S is (included in) a smooth submanifold .2~ of R". (Note that
this new statement recovers Proposition 8 if .2~ = RR".)

Proposition 18. (Extended regularity criterion) Let 2~ C R" be a €' smooth submanifold of dimension
dand S: 2 = R"™ be a set-valued map whose graph is locally closed at (x,y) € Graph(S). Consider
the mapping
H:R"=R"
H(y") =D*S(x|5) (y) N Ty (%).
IfH(0,,) = {0,}, or equivalently
Naraph(s) (£:) N (T (%) X {0 }) = {0nsm} ,

then S has the Aubin property at X for y relative to Z". Furthermore,

. _ u _ _ m
ip (51 5) = " =sup {1 1) € N (55) 17 (5) <)}



Proof. Fix (%,y) € Graph(S) and denote by Ny (%) the normal space of 2 at X (seen as subspace of
R, that is, Ty (¥) ® N (¥) = R"). Given a closed neighborhood U = Vi x W of (,7), we define the
set-valued map S through its graph by

{ S:R*"=3R"
Graph (§) = (Graph (S)NU) + (N () x {0,,}).

We may assume that Graph (§) NU is closed. It follows easily that

Shrinking U around (&,y) if necessary, the projection parametrization L : (x+ Ty (X)) NVz — 2 of
the manifold 2" defined by the relation x — L(x) € Ny (%) becomes a local chart of 2™ at ¥. Since
S(x1) = S(x1 +x2) for any x, € Ny (%), we can deduce that lipS(% | 7) > lip ,-S(% | 7). It is also elementary
to show that lipS(% | ¥) = lip ,-S(¥ | ). O

The second result is an adaptation of part of [19, Theorem 6]. Recall that for a smooth function
f:R" = R™ 5 € R"is a critical point if the derivative V f(X) is not surjective, while y € R is a critical
value if there is a critical point ¥ for which f (%) = 7. (Note this is a particular case of the general
definition given in Definition 17.)

Lemma 19. Let 2 be a €* smooth manifold in R" of dimension d, and .# be a €* manifold in R"™
such that A C X xR™, with k > dim.# — dim Z". Then the set of points x € Z~ such that there exists
some y satisfying (x,y) € A and N 4 (x,y) N (Ta (x) X {0,}) 2 {0,1+m} is of Lebesgue measure zero
in .

Proof. Let Proj , denote the restriction to the manifold .# of the projection of 2" x R™ onto Z". As
k > dim.# —dim 2", the set of critical values of Proj , is a set of measure zero by the classical Sard
theorem [32]. Let (x,y) € .# and assume (x*,0,,) € N 4 (x,y) N (Ty (x) x {0,}) with x* # 0,. This
gives

Ty (%)= (Ng(xy)" C{x} xR",

where {x*}= = {x¥ e R" | (x*,x') = 0}. Since T (x,y) C Ty (x) x R we obtain
Ty (x,y) C ({x*}L NTy (x)) R,

Let Z stand for the subspace on the right hand side. Then the projection of Z onto T (x) is a proper
subspace of Ty (x). All the more, this applies to 7, (x,y). By [19, Corollary 3], this implies that (x,y)
is a singular point of Proj ,, so x is a critical value of Proj ,. The conclusion of the lemma follows. O

3.3 Linking sets

We introduce the notion of linking that is commonly used in critical point theory. Let us fix some
terminology: if B C R" is homeomorphic to a subset of R? with nonempty interior, we say that the set
dB is the relative boundary of B if it is a homeomorphic image of the boundary of the set in R.

Definition 20. [34, Section I1.8] Let A be a subset of R”™ and let B be a submanifold of R"™ with
relative boundary dB. Then we say that A and I" = dB link if

G)ANT =0
(ii) for any continuous map 4 € €° (R"*", R"**™) such that & |r= id we have h(B)NA # 0.
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In particular, the following result holds. This result will be used in Section 4.

Theorem 21 (Linking sets). Let J#] and 5 be linear subspaces such that 7 ® 5 = R"™™, and take
any v € #1\{0}. Then for 0 < r <R, the sets

A:=S(0,r)NA and  T:=(B(0,R)NA)U(S(0,R)N (A +R;{¥}))
link.

Proof. Use methods in [34, Section I1.8], or infer from Example 3 there. O

We finish this section with two useful results. The first one is well-known (with elementary proof)
and is mentioned for completeness.

Proposition 22. If ) and J#; are subspaces of R"™™, then ;- N Ay~ = {0} if and only if 201 + 5 =
Rner

The following lemma will be needed in the proof of forthcoming Lemma 31 (Section 4).

Lemma 23. If the sets B (0,1) and D are homeomorphic, then any homeomorphism f between S (0,1)
and D can be extended to a homeomorphism F : B (0,1) — D so that F [ 1)= f.

Proof. Let H : B(0,1) — D be a homeomorphism between B (0, 1) and D and denote i : S(0,1) — dD
by h = H [g(9,1)- We define the (continuous) function F : B (0,1) — D by

P~ (AR F D) e 0
H(0) if x=0.

It is straightforward to check that F' [g )= f. Let us show that F is injective: indeed, if F (x;) = F (x2),
then |xi| A= (f (x1/|x1])) = |x2| A~ (f (x2/|x2|)). If both sides are zero, then x; = x, = 0. Otherwise
|x1| = |x2| and x1 /|x1| = x2/|x2|, which implies that x; = x;.

To see that F is a bijection, fix any y € D, and let X' € B(0,1) be such that y = H (x’). If ¥’ = 0, then
y = F (0). Otherwise,

o=t (W1 (5g)) =l tor (17 ontin) = (o1t oniip).

This shows that F is also surjective, thus a continuous bijection. Since B (0, 1) is compact, it follows that
F is a homeomorphism. a

4 Generic continuity of tame set-valued maps

From now on we limit our attention to the class of semialgebraic (or more generally, o-minimal) set-
valued maps. In this setting our main result eventually asserts that every such set-valued map is generi-
cally strictly continuous (see Section 4.3). To prove this, we shall need several technical lemmas, given
in Section 4.2. In Section 4.1 we give preliminary definitions and results of our setting.
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4.1 Semialgebraic and definable mappings

In this section we recall basic notions from semialgebraic and o-minimal geometry. Let us define properly
the notion of a semialgebraic set ([3], [8]). (We denote by R[xj,...,x,] the ring of real polynomials of n
variables.)

Definition 24 (Semialgebraic set). A subset A of R” is called semialgebraic if it has the form

k
A=|J{xeR": pi(x) =0,gi1(x) >0,...,qie(x) > 0},
i—1

where p;,gij € R[xi,...,x,] forallie {1,...,k} and j € {I,...,¢}.

In other words, a set is semialgebraic if it is a finite union of sets that are defined by means of a finite
number of polynomial equalities and inequalities. A set-valued map S : R" = R™ is called semialgebraic,
if its graph Graph (S) is a semialgebraic subset of R” x R".

An important property of semialgebraic sets is that of Whitney stratification ([12, §4.2], [8, Theo-
rem 6.6]).

Theorem 25. (¢* stratification) For any k € N and any semialgebraic subsets X1, ...,X; of R", we can
write R" as a disjoint union of finitely many semialgebraic €* manifolds {.4;}; (that is, R" = U{: 1)
so that each X; is a finite union of some of the .#;’s. Moreover, the induced stratification {AM!}; of X;
has the Whitney property. This yields in particular that for any sequence {xy}, C //ij converging to
X € ///l(]) we have

lirvnj:pl\%j (xv) C Ny (xy).- .1
Property (4.1) is known as the Whitney-(a) property of the stratification (also called normal regularity in
[19, Definition 5]). The dimension dim (X) of a semialgebraic set X can thus be defined as the dimension
of the manifold of highest dimension of its stratification. This dimension is well defined and independent
of the stratification of X [8, Section 3.3].

As a matter of the fact, semialgebraic sets constitute an o-minimal structure. Let us recall the defini-
tions of the latter (see for instance [9], [12]).

Definition 26 (o-minimal structure). An o-minimal structure on (R,+,.) is a sequence of Boolean alge-
bras 0 = {0,}, where each algebra 0, consists of subsets of R”, called definable (in €'), and such that
for every dimension n € N the following properties hold.

(i) For any set A belonging to ), both A x R and R x A belong to &, 1.

(ii) If IT: R**! — R” denotes the canonical projection, then for any set A belonging to &, , the set
I1(A) belongs to 0.

(iii) O), contains every set of the form {x € R" : p(x) = 0}, for polynomials p : R" — R.

(iv) The elements of &) are exactly the finite unions of intervals and points.

When &' is a given o-minimal structure, a function f : R* — R™ (or a set-valued mapping F : R" =
R™) is called definable (in ©) if its graph is definable as a subset of R"” x R™.

12



It is obvious by definition that semialgebraic sets are stable under Boolean operations. As a conse-
quence of the Tarski-Seidenberg principle, they are also stable under projections, thus they satisfy the
above properties. Nonetheless, broader o-minimal structures also exist. In particular, the Gabrielov the-
orem implies that “globally subanalytic” sets are o-minimal. These two structures in particular provide
rich practical tools, because checking semi-algebraicity or subanalyticity of sets in concrete problems of
variational analysis is often easy. We refer to [4], [5], and [20] for details. Let us mention that Theo-
rem 25 still holds in an arbitrary o-minimal structure (it is sufficient to replace the word “semialgebraic”
by “definable” in the statement). As a matter of the fact, the statement of Theorem 25 can be rein-
forced for definable sets (namely, the stratification can be taken analytic), but this is not necessary for
our purposes.

Remark. Besides formulating our results and main theorem for semialgebraic sets (the reason being
their simple definition), the validity of these results is not confined to this class. In fact, all forthcoming
statements will still hold for “definable” sets (replace “semialgebraic” by “definable in an o-minimal
structure”) with an identical proof. Moreover, since our key arguments are essentially of a local nature,
one can go even further and formulate the results for the so-called tame sets (e.g. [5], [20]), that is, sets
whose intersection with every ball is definable in some o-minimal structure. (In the latter case though,
slight technical details should be taken into consideration.)

We close this section by mentioning an important property of semialgebraic (more generally, o-
minimal) sets. Let us recall that (topological) genericity and full measure (i.e., almost everywhere) are
different ways to affirm that a given property holds in a large set. However, these notions are often
complementary. In particular, it is possible for a (topologically) generic subset of R" to be of null
measure, or for a full measure set to be meager (see [26] for example). Nonetheless, this situation
disappears in our setting.

Proposition 27 (Genericity in a semialgebraic setting). Let U,V be semialgebraic subsets of R", and
assume V C U. Consider the following properties:

(i) V is dense in U ;
(i') V is (topologically) generic in U ;
(ii) U\V is of null (Lebesgue) measure ;
(ii') the dimension of U\V is strictly smaller than that of U.
Then properties (i),(i') are equivalent and imply each of the equivalent properties (ii) and (ii’).
Remark. An example of sets U and V in R? satisfying (i), (ii’) but not (i), (i') is obtained by setting

U=(0,1]x[0,1)U({=1}x[0,1]) andV = (0,1) x (0,1).

4.2 Some technical results

In the sequel we shall always consider a set-valued map S : 2" = R"”, where 2~ C R", and we shall
assume that S is semialgebraic.

Theorem 28. Assume that S: 2" = R™ is outer semicontinuous, and the sets 2~ C R" and Graph (S) are

semi-algebraic. Then S is strictly continuous with respect to X everywhere except on a set of dimension
at most (dim 2" —1).
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Proof. The map ™! : R — 2" is semialgebraic and has a closed graph. Thus, applying [19, Theorem 6],
we conclude that the set of critical values of S~! as a subset of 2", which we call .2”, is of smaller
dimension than 2". This means that for any ¥ € 2°\.2" and y € S~!(%), S~! is metrically regular at
(¥,%), or equivalently, that S has the Aubin property at (¥,y) and S is strictly continuous at . O

The conclusion of the above result can be significantly reinforced, asserting in fact set-valued differ-
entiability in the sense of Definition 11.

Theorem 29. Assume that S : 2" = R™ is outer semicontinuous, and the sets 2~ C R" and Graph(S)
are semi-algebraic. Then S is set-valued differentiable with respect to 2~ everywhere except on a set of
dimension at most (dim(.2") — 1).

Proof. Using Theorem 25 we stratify 2 into a disjoint union of manifolds (strata) {.2}; and study
how S behaves on the strata .Z; of full dimension (that is dim(.2;) = dim(.2") = d < n). We stratify the
semi-algebraic set Graph(S) N (2 x R™) into a finite union of disjoint manifolds {.# }, and let .# be
the stratum that contains (&, y).

Step 1: To show Ngrapn(s) (5,7) C Nz (X, 7).

The proof of this step is essentially the key step in the proof of [19, Theorem 6], but we shall include
the full proof for the sake of completeness. For v € Ngpn(s) (%,¥), we can write v as a limit of Fréchet
normal vectors v; € Ngrapn(s) (Xi,¥i) With (x;,y;) — (X,7). Passing to a subsequence if necessary, we may
assume that the sequence {(x;,y;)}; belongs to the same stratum, say .#- and v; € N. 4, (xi,yi) (note that
M- C Graph(S)). Since .# is a smooth manifold, we have N .. (xi,y;) = N z. (xi,yi) = [T s (x:,:)] >
Using the Whitney property (normal regularity) of the stratification, we deduce that v must lie in some
N.z(%,53).

Step 2: To show that if

N///(XO_]) N [T%J ()Z) X {Om}] = {0n+m}7 (4.2)
then S is pseudo strictly differentiable at x for ¥.

Let d := dim(Z7). The dimension of Ty (%) x R" is d + m, and the dimension of Ty (%) X {0,,} is
d. If (4.2) holds, then the dimension of N (¥,7) N [Ty () x R™] is at most m.

We try to find a linear map 7 : R" — R™ such that S is pseudo strictly T-differentiable at x for ¥
relative to 2. This is equivalent to finding 7' such that S — 7" has the Aubin property with modulus 0 at
X for y — T (%) relative to 2. By Proposition 18, this is in turn equivalent to

NGraph(SfT) ()f,y— T()Z)) N [T% (f) X Rm] - {On} x R™. (4.3)

We now evaluate Ngraph(s—7) (5,5 — T(%)) N [T2;(X) x R™]. Note that Graph(S — T') = L(Graph(S)),
where L : R" x R — R" x R™ is a linear isomorphism defined by

L(X,y) = (xay_ T(.X))
By [31, Theorem 6.43], we have
NGraph(SfT) (ja)_’_ T()E)) N [Ti’?”] (f) X Rm] = (L*)_l (NGraph(S) (f,)_)) N [TQ”/ (f) X Rm]) .

(Apply [31, Theorem 6.43] for F equal to the linear map L to get "C", then taking F ! we obtain "D".)
We can easily see that L can be represented in a matrix form as

/1 0
L:<_T1>,
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which gives for the adjoint map L* and its inverse (L*)~! correspondingly, the representations

(3T ) (7))

Let {(u;,vi) }/~ | be a set of m linearly independent vectors whose span contains Ngpn(s) (5,5) N [T2; (¥) X
R™] and satisfy

span ({ (s, v) Y1) O[Tz () X 0,}] = {0}
This ensures that {v;}}" | are linearly independent. Let T; : Ty (¥) — R™ be such that (u; + Ty (v;),vi) €
{0,} x R™ for all 1 <i < m, or equivalently 7{"(v;) = —u;. The linear map 7 : Ty;(X) — R™ is thus
determined from 77" : R™ — Ty, (%) and can be extended into a linear map 7 : R” — R™ by setting
T (u) =0, for all u € Ny, (%). Then (4.3) holds.

Step 3: Wrapping up: Lemma 19 and Step 1 tell us that for all ¥ € 2" except on a subset of 2" of
dimension at most d — 1, Ngrapn(s) (5,¥) N [T2; (%) X {0, }] = {0, } for all y € S(x). Step 2 then allows
us to conclude that S is set-valued differentiable except on a subset of 2~ of dimension smaller than d.
g

Remark. Note that the domain of S
dom(S) :={xe 2 :S(x) # 0},

being the projection to R” of the semialgebraic set Graph (S), is always semialgebraic. Thus, if S has
nonempty values, the above assumption “.2" semialgebraic” becomes superfluous. In any case, one can
eliminate this assumption from the statement and replace 2" by 2" := dom(S) the domain of S.

The next lemma will be crucial in the sequel. We shall first need some notation. In the sequel we
denote by
Z:={0,} xR" 4.4)

as a subspace of R” x R™ and we denote by S : R* = R™ the set-valued map whose graph is the closure
of the graph of S, that is,
Graph (S) = cl(Graph (S)).

Lemma 30. Let S : R" = R™ be a closed-valued semialgebraic set-valued map. For any k > 0, there is
a €* stratification {.4;}; of Graph (S) such that if S (¥) # S (%) for some % € R", then there exist § € R™,
a stratum M; of the stratification of Graph (S) and a neighborhood U of (%,y) such that (X,y) € cl ()
and

(%,7)+.2)NA;NU = 0.

Proof. By Theorem 25 we stratify Graph (S) into a disjoint union of finitely many manifolds, that is
Graph (S) = U;.#;. Consider the set-valued map S; : R" = R™ whose graph consists of the manifold
M;. Let further S; : R" = R™ be the map such that $; (x) = cl(S; (x)) for all x, and S; : R” = R” be the
map whose graph is cl (Graph (S;)), also equal to ¢l (Graph (S;)). Both S; and §; are semialgebraic (for
example, [8]), and there exists a stratification of cl (Graph (S)) such that the graphs of S;, S; and S; can be
represented as a finite union of strata of that stratification, by Theorem 25 again.

We now prove that if (%) # S (%), then there is some i such that S; is not outer semicontinuous at .
Indeed, in this case there exists y such that (%,y) € cl(Graph (S)) \Graph (S). Note that cl (Graph (S)) =
U;Graph (S;). This means that (¥,§) must lie in Graph (8;) \Graph (S;) for some i, which means that S;
is not outer semicontinuous at X as claimed.
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Obviously (%,y) € cl(.#;). Suppose that ((x,y) +.2) N.#; NU # 0 for all neighborhoods U containing
(%,¥). Then there is a sequence y; — y such that (%,y;) € .#;. Since S; is closed-valued, this would yield
(x,¥) € Graph (S;), which contradicts (¥,7) ¢ Graph (S;) earlier. O

Keeping now the notation of the proof of the previous lemma, let us set Z := (%,7). Let further
M, A" be the strata of cl(Graph (S)) such that z € .#' C cl(.#;). In the next lemma we are working
with normals on manifolds, so it does not matter which kind of normal in Definition 4 we consider.

Lemma 31. Suppose there is a neighborhood U of 7 such that 7 € #', M’ C cl(M;) and (Z+ L) N
M;NU =0, where £ is defined in (4.4). Then Nz (Z)N.ZL+ 2 {0,4m ).

Proof. We prove the result by contradiction. Suppose that N 4 (Z) 1.+ = {0,.,,}. Then T (3) +.£ =
R"*™ by Proposition 22. We may assume, by taking a submanifold of .’ if necessary, that dim.#' = n
so that dim.Z'+dim.Z =n+m and T 4 (Z) & £ = R"™™. Owing to the so-called wink lemma (see
[11, Proposition 5.10] e.g.) we may assume that dim.#; = n+ 1.

(Case m = 1) We first consider the case where m = 1. In this case, the subspace .Z is a line whose
spanning vector v = (0, 1) is not in 7 4 (Z). There is a neighborhood U’ of Z such that U’ C U, .’ NU’
equals £~ ! (0) for some smooth function f : U’ — R (local equation of .#"), and .#;NU' = f~' ((0,)).
The gradient V f (Z) is nonzero and is not orthogonal to v since T 4 (Z) is the set of vectors orthogonal to
V£ (z)and T 4 (Z) ®.% = R There are points in (Z+.£) N U’ such that f is positive, which means
that (z+.2)N.#;NU’ # 0, contradicting the stipulated conditions. Therefore, we assume that m > 1
for the rest of the proof.

(Case m > 1) As in the previous case, we shall eventually prove that (74 .Z) N.#; U’ # 0 reaching
to a contradiction. To this end, let us denote by A the (semialgebraic) homeomorphism of R"™" to
R"*™ which, for some neighborhood V C U of Z, maps homeomorphically V N (.Z;U.#") to R" x
(Ry x{0,—1}) CR*™™ and V N.#" to R" x {0,,} (see [8, Theorem 3.12] e.g.).

Claim. We first show that there exists a closed neighborhood W C V of Z such that W N.#’ and
OW N ; are both homeomorphic to B" and W N.#' = B"" (z,R;) N.#' for some R; > 0.

Since .’ is a smooth manifold, there exists Ry > 0 such that B""" (z,R;) N.#" is homeomorphic (in
fact, diffeomorphic) to (T 4 (Z) +z) NB"*™(z,R; ), which in turn is homeomorphic to B", as is shown by
the homeomorphism:
lz—2Z] - _

= (g 0 -3) +
where P denotes the projection onto the tangent space Z+ 7 4 (Z). Consider the image of B"*" (z,R;) N
" under the map hy. This image lies in the set R" x {0,,}. Therefore, for r; > 0 sufficiently small, the
set W =hy' (ho (B (z,R\) N.A") + [—r1,r1]™) satisfies the required properties, concluding the proof
of our claim.

Let us further fix v € £\ {0} and consider the set

R e e T )

I ¥

Setting
A:=S""""1(zr)N.ZL, where 0 < r <R,
we immediately get that the sets A and I link (¢f. Theorem 21). Based on this, our objective is to prove
that the sets A and I' also link, where I is defined by
L= Wn.")u (W n(a0.4")),

-

F] FZ
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Figure 4.1: Linking sets (A,I") and (A,T).

provided r > 0 is chosen appropriately. Once we succeed in doing so, we apply Definition 20 (for & = id)
to deduce that (Z4.2) N.#;NU # 0, which contradicts our initial assumptions.
Figure 4.1 illustrates the sets A, ' and I forn = 1 and m = 2.

For the sequel, we introduce the notation “— " in f : D; — D, to mean that f is a homeomorphism
between the sets Dy and D,. In Step 1 and Step 2, we define a continuous function H : (B"*1(0,1) x {0})U
(S"(0,1) x [0,2]) — B"*™(z,R) that will be used in Step 3.

Step 1: Determine H on (B""'(0,1) x {0}) U (S"(0,1) x [0,2]).
In Steps 1 (a) to 1 (c), we define a continuous function H on S" (0, 1) x [0,2] so that H [gx(g,1)x[0,2] 1S
a homotopy between I and I"". More precisely, denoting by

S (0,1) :=S"(0,1) N (R"
S" (0,1):=S"(0,1)N (R"

X X

we want to define H in such a way that its restrictions

H (-,0) g1 0.1): S (0,1) = Ty CR™™,
H(-,0) | 0.1): S™(0,1) =T CR™™,
H(-,2) g1 0.1): S (0,1) = T} CR™™,
H(-2) | 0.1):S"(0,1) > Th C R™™,

are homeomorphisms between the respective spaces. Note that both S (0,1) and S” (0, 1) are homeo-
morphic to B” (0, 1). For notational convenience, we denote by S” (0, 1) the set S” (0,1) N (R" x {0}) =
S*1(0,1) x {0}.
Step 1 (a). Determine H on S (0,1) x [0, 1].

Since W Ncl.#; is a closed set that does not contain Z, there is some R > 0 such that (W N.Z;) N
B"*" (z,R) = 0 and B""" (Z,R) C U. We proceed to create the homotopy H so that

H (1) |gno1): S} (0,1) =T CR™™,

H(-1) | 01):S" (0,1) = T5 C R,

where

O =B""(zZ,R)N.#',
and Iy € S*™~1(z,R) is homeomorphic to I's.
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The first homotopy between I'; and I'} can be chosen such that H (s,7) € .#' for all s € S, (0,1) and
t € [0, 1]. We also require that d (Z,H (s,t)) > R forall s € S” (0,1) and 7 € [0, 1], which does not present
any difficulties.

For the second homotopy between I'; and Iy, we first extend H (-, 1) so that H (-, 1) |sn(9,1): S" (0,1) —
'/ UTY is a homeomorphism between the corresponding spaces. This is achieved by showing that
there is a homeomorphism H (-, 1) g1 (9,1) between S” (0,1) and I';. Let hy : B"(0,1) = §" (0,1) be a
homeomorphism between B" (0,1) and S” (0, 1). Then H (-, 1) |sx 0,1y 952 |sr-1(0,1): S"=1(0,1) = arYy.
By Lemma 23 this can be extended to a homeomorphism G : B (0,1) = I'j. Define H (-, 1) lsn (0,1):
S2.(0,1) = T3 by H (1) |sn 0.)= Gohy '

It remains to resolve H on S” (0,1) x (0, 1). Note that the sets

H(SL(0,1)x[0,1]), H(S"(0,1)x{0})=TI> and H(S"(0,1)x{1})=I%

are all of dimension at most 7, so the radial projection of these sets onto S"*”"~! (z, R) is of dimension at
most n. Since S"*~! (z,R) is of dimension at least n+ 1, we can find some point p € S"*~1 (z,R) not
lying in the radial projections of these sets. The set

D:=R""\((Ry {p—2}) +{z}) UB™" (z,R))

is homeomorphic to R"*™, so by the Tietze extension theorem (see for example [25]), we can extend H
continuously to S” (0, 1) x [0, 1] so that H(S" (0,1) x [0,1]) C D.

Step 1(b). Determine H on S} (0, 1) x [1,2].
We next define H [g1 (g,1)x[1,2» the homotopy between I' and I'}. Since .# is a manifold, for any & > 0,
we can find R small enough such that for any z € B"™ (zZ,R) N.#’, the distance from z to 2+ T 4 (2)
is at most SR. The value R can be reduced if necessary so that the mapping P, which projects a point
z € B"™(Z,R)N.#" to the closest point in Z+ 7.4 (Z), is a homeomorphism of B"™ (z,R) N.#" to its
image.

Define the map H; : (B"™" (z,R) N.#") x [1,2] — B"*™" (Z,R) by

#1600 = (i sty p =g (@ 0et 6= DPE)-D) +2

This is a homotopy from Iy to I'. For any homeomorphism /; : B+ (Z, R) .4’ = S". (0, 1), we define
H |S'i(0=1)x[071} ViaH(S,l) = H, (l’ll_l (S) ,l).

Step 1(c). Determine H on S" (0,1) x [1,2]. We now define H [gn (9,1)x[1,2), the homotopy between
I") and T that respects the boundary conditions stipulated by H [gn (9,1)x[1,2)- We extend H (-, 1) [sn(g.1)
so that it is a homeomorphism between S" (0,1) and I"; UT;, by using methods similar to that used in
Step 1(a).

We now use the Tietze extension theorem to establish a continuous extension of H to S" (0, 1) x [1,2].
We are left only to resolve H on S” (0,1) x (1,2). Much of this is now similar to the end of step 1(a).
The dimension of S"*"~!(z,R) is n+m — 1, while the dimensions of I}, I, and H (S™ (0,1) x [1,2])
are all at most n. Therefore, there is one point in S"*~! (z, R) outside these three sets, say p. Since
S*m=1(z,R)\ {p} is homeomorphic to R**"~!, the Tietze extension theorem again implies that we can
extend H continuously in S" (0,1) x [1,2].

Step 1(d). Determine H on B"*! (0,1) x {0}. We use Lemma 23 to extend the domain of H (-,0) :
S"(0,1) = (' ONW)U (A;NOW) to B (0,1) so that

H(-,0):B""(0,1) = (A vdy)nW
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is a homeomorphism.

Step 2: Choice of R and r. We now choose R and r so that H (S" (0,1) x [0,2]) does not intersect
A=S"""1(z,r)N(z+.Z). To this end, consider the minimization problem

min {dist (2,7 4 (2) +2) :z€ " (Z,r)N(Z+.2)}.

Since "~ (z,r)N (z+ &) is compact, the above minimum is attained at some point z, and its value is
not zero (otherwise z, — Z would be a nonzero element in 7 4 (Z) N.Z, contradicting T, () N.ZL = {0}).
Therefore, for some constant € € (0, 1] independent of r, we have dist (z,,7 4 (Z) +2) = €.
Given 8 >0, we can shrink R if necessary to getd (z,7 4 (Z) +2) < 8 Rforallz€ H (S, (0,1) x [0,1]).

If § < &, we can find some r satisfying R < er < r < R. Since R < er, H (S (0,1) x [1,2]) does not
intersect S"*" 1 (z,r) N (Z+.%). >From r <R, it is clear that H (S" (0,1) x [0,2]), being a subset of
cl(R™™\B"*™ (z,R)), does not intersect S"*"~! (z,r) N (z+ ). Elements in H (S". (0,1) x [0, 1]) are
either in B"*™(z,R) N.#" or outside B"™(z,R), so H (S"(0,1) x [0,2]) does not intersect A as needed.

Step 3: “Set-up” for linking theorem. Let
hy : B (0,1) = (B"(0,1) x {0}) U(S"(0,1) x [0,2])
be a homeomorphism between the respective spaces. We can extend the homeomorphism
H |su0.1)x{2) ©3 |sno.1): S"(0,1) S T

to
ha : B (0,1) 5 (T (2) + Ry {v} +2) B (Z,R).

Define the map
g (Lo (D) + R {v} +2)NB"™ (Z,R) — B"™ (,R)

by g=Hohso h;l. By construction, the map g | is the identity map there. Furthermore, g can be
extended continuously to the domain R"*™ by the Tietze extension theorem.

Step 4: Apply linking theorem. Recall that A := B"""(z,r) N (Z+.%) and I link by Theo-
rem 21. This means that there is a nonempty intersection of g ((7 4 (Z) + R4 {v}+2Z)NB"(Z,R))
with A. Step 2 asserts that the intersection is not in H (S"(0,1) x [0,2]), so the intersection lies in
H (B""1(0,1) x {0}). In other words, A and I link. This means that W N .#; intersects B"" (z,r) N
(z+-Z), which means that (Z+.2) N.#; NU # 0, contradicting our assumption. O

4.3 Main result

In this section we put together all previous results to obtain the following theorem. Recall that § is
the set-valued map whose graph is the closure of the graph of S (thus, S is outer semicontinuous by
definition).

Theorem 32 (Main result). If S : 2" = R" is a closed-valued semialgebraic set-valued map, where
2 C R" is semialgebraic, then S and § differ outside a set of dimension at most (dim 2" —1).

Proof. We first consider the case where 2~ = R and a € stratification of cl (Graph (S)). If S (¥) # S (%),
then Lemma 30 and Lemma 31 yield that there exists some y and stratum . containing 7 := (%,y) such
that N 4 (Z) N £+ 2 {04, }. Finally, since there are only finitely many strata, Lemma 19 tells us that
S(x) and S(x) may differ only on a set of dimension at most n — 1. This proves the result in this particular
case.

We now consider the case where 2~ # R". Let 2° = U.Z be a stratification of 2", and let Z be the union
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of strata of full dimension in .2". Each stratum in & is semialgebraically homeomorphic to R, where
d:=dim.2 andlet h; : R? — Z; denote such a homeomorphism. By considering the set-valued maps
Soh; for all j, we reduce the problem to the aforementioned case. Since the set of strata (a fortiori the
set of full-dimensional strata) is finite, we deduce that S(x) # S(x) can only occur in a set of dimension
atmostd — 1. O

The following result is now an easy consequence of the above, and yields in particular that semial-
gebraic set-valued maps are generically continuous.

Corollary 33. A closed-valued semialgebraic set-valued map S : & = R™, where & C R" is semial-
gebraic, is continuous and set-valued differentiable outside a set of dimension at most (dim 2™ — 1).

Proof. By Theorem 32 the map S differs from the outer semicontinuous map S on a set of dimension at
most (dim 2" — 1). Apply Theorem 29. O

Remark. Theorem 32 and Corollary 33 (as well as all of the previous preliminary results (Lem-
mas 30, 31, Theorems 29) can be restated for the case where S is definable in an o-minimal structure.
With slightly more effort we can further extend these results in case where S is tame, noting that one
performs a locally finite stratification in the tame case as opposed to a finite stratification.

S Applications in tame variational analysis

A standard application of Theorem 2 is to take first the closure of the graph of S, and then deduce
generic continuity for the obtained set-valued map. While this operation is convenient, this new set-
valued map no longer reflects the same local properties. For example, for a set C C R", consider the
Fréchet normal cone mapping N¢ : dC = R" and the limiting normal cone mapping N¢ : dC = R”,
where cl(Graph(N¢)) = Graph(N¢). The Fréchet normal cone N¢ (Z) for Z € dC depends on how C
behaves at Z, whereas the normal cone N¢ (Z) offers instead an aggregate information from points around
Z. The following result is comparable with [31, Proposition 6.49], and is a straightforward application of
Corollary 33.

Corollary 34 (Generic regularity). Given closed semi-algebraic sets C and D with D C C, the set-valued
map Nc : C = R" is continuous on D\D', where D' is semialgebraic and dim (D') < dim (D). When
D = dC, we deduce that N¢ (z) = Nc (z) for all z in (C)\C', with dim (C') < dim (9C).

An analogous statement of the above corollary can be made for (nonsmooth) tangent cones T¢ and
Tc as well.

Remark. From the definition of subdifferential of a lower semicontinuous function [31, Definition 8.3],
we can deduce that the regular (Fréchet) subdifferentials are continuous outside a set of smaller dimen-
sion. This result is comparable with [31, Exercise 8.54]. Therefore nonsmoothness in tame functions
and sets is structured.

Let us finally make another connection to functions whose graph is a finite union of polyhedra,
hereafter referred to as piecewise polyhedral functions. Robinson [29] proved that a piecewise polyhedral
function is calm (outer-Lipschitz) everywhere [31, Example 9.57], and a uniform Lipschitz constant
suffices over the whole domain of the function (although this latter is not explicitly stated therein). A
straightforward application of Corollary 33 yields that piecewise polyhedral functions are set-valued
continuous outside a set of small dimension. We now show that a uniform Lipschitz constant for strict
continuity applies.

20



Proposition 35 (Uniformity of graphical modulus). Let S : X = R™ be a piecewise polyhedral set-valued
map, where X C R". Then S is strictly continuous outside a set X', with dim (X ! ) < dim (X). Moreover,
there exists some K > 0 such that if S is strictly continuous at X, then the graphical modulus lipyS (¥ | y)
is a nonnegative real number smaller than K.

Proof. The first part of the proposition of strict continuity is a direct consequence of Corollary 33
since S is clearly semialgebraic. We proceed to prove the statement on the graphical modulus. We
first consider the case where the graph of S is a convex polyhedron. The graph of S can be written as
a finitely constrained set Graph (S) = {z € R"™ | Az = b,Cz < d} for some matrices A,C with finitely
many rows. The projection of Graph (S) onto R” is the domain of S, which we can again write as
dom(S) =X ={xeR" |Ax=V',C'x<d'}. Let Z be the lineality space of dom (S), which is the set
of vectors orthogonal to the rows of A’. We seek to find a constant K > 0 such that if x lies in the relative
interior (in the sense of convex analysis) of X and y € S(x), then lipyS (x| y) < K. By Proposition 18,
we have
f= sup {10 @0) € Nonni (50) 1 (2 xR},
(x,y)er-1nt(x)

where “r-int” stands for the relative interior. The above value is finite because of two reasons. Firstly, if
(@,0) € Ngraph(s) (x,¥) N (£ x R™) , then by the convexity of Graph (S), x lies on the relative boundary
of X. Secondly, the “sup” in the formula is attained and can be replaced by “max”. This is because the
normal cones of Graph (S) at z = (x,y) can be deduced from the rows of C in which Cz < d is actually
an equation, of which there are only finitely many possibilities. In the case where S is a union of finitely
many polyhedra, we consider the set-valued maps denoted by each of these polyhedra. The maximum of
the Lipschitz constants for strict continuity on each polyhedral domain gives us the required K. O
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