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Abstract. This paper studies stability properties of linear optimization problems with finitely
many variables and an arbitrary number of constraints, when only left hand side coefficients
can be perturbed. The coefficients of the constraints are assumed to be continuous functions
with respect to an index which ranges on certain compact Hausdorff topological space, and these
properties are preserved by the admissible perturbations. More in detail, the paper analyzes the
continuity properties of the feasible set, the optimal set and the optimal value, as well as the
preservation of desirable properties (boundednesss, uniqueness) of the feasible and of the optimal
sets, under sufficiently small perturbations.
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1 Introduction

Let T be a compact Hausdorff topological space (a particular instance being a finite set equipped
with the discrete topology), b ∈ C (T,R) and c ∈ Rn\ {0n} . We consider the parametric problem

P (a) : inf c′x
s.t. a′tx ≥ bt, t ∈ T.

To this family of problems, depending on the parameter a = {at}t∈T ranging on C (T,Rn) ,
equipped with the supremum norm ‖·‖∞ , we attach the following sets/values:

1. the feasible set F (a) , i.e. the set of all x ∈ Rn such that a′tx ≥ bt, t ∈ T ;

2. the optimal set S (a) , i.e. the set of all x ∈ Rn minimimizing c′x on F (a) ;

3. the optimal value v (a) for all a ∈ C (T,Rn) , with v (a) = +∞ whenever F (a) = ∅, and
v (a) = −∞ if c′x is unbounded below on F (a) .

Thus, F ,S : C (T,Rn)⇒ Rn are set-valued mappings whose domains, denoted by domF and
domS, are the sets of those a ∈ C (T,Rn) such that F(a) and S(a) are nonempty, respectively.
The domain of the ordinary mapping v : C (T,Rn)→ R∪{±∞}, i.e. the set of those a such that
v (a) < +∞, obviously coincides with domF . We shall also consider the following sets:
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the FONDECYT Grant 1130176 (Chile). The research of the fourth author was partially supported by the MIUR
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1. BF is the set of parameters a such that F (a) is nonempty and bounded;

2. UF is the set of parameters a such that F (a) is a singleton;

3. BS is the set of parameters a such that S (a) is nonempty and bounded;

4. US is the set of parameters a such that S (a) is a singleton.

In this paper we are mainly interested in the description of relevant topological and continuity
properties of F ,S and v. In particular, about the issue of continuity, we focus on upper/lower
semicontinuity properties of F ,S with respect to perturbations. We aim at characterizing pa-
rameters a ∈ C (T,Rn) for which properties like boundedness of feasible/optimal set remain
invariant under small perturbations. This question can be reformulated in terms of character-
izing the topological interior of the sets BF , UF , BS and US . A more general approach would
consist in considering parameters a ranging on a subset Ω of C (T,Rn), that is, restricting the
set of allowed perturbations, see Example 1.2. In this work we shall only consider the case
Ω = C (T,Rn).

Let us also point out that we consider only left-hand side perturbations, in the sense that vec-
tors c (objective function) and b (right-hand side coefficients) are kept fixed in this setting. This
ostensibly innocent detail eventually increases the difficulty of the study. The same phenomenon
arises in sensitivity analysis in linear programming, whose objective consists in estimating the
impact on the optimal value of perturbing the data: there exists a wide literature on perturba-
tions of b and c (even on simultaneous perturbations), but few works are devoted to analyze only
left-hand side perturbations; the interest of the latter is illustrated by the following examples.

Example 1.1 (finite zero-sum game). This first example comes from game theory, more precisely
the setting of two person, finite, zero sum games. They are described by a real valued matrix
P , player I chooses a row i player II chooses a column j and the resulting pay-off pij is what
the second player pays (in algebraic sense) to the first. Thus player I in a sense tries to get the
maximum possible, while the second one wishes to minimize payments. The celebrated minimax
theorem of von Neumann states that such games have (Nash) equilibria in mixed strategies.
Furthermore, Player II can select an optimal strategy by solving the auxiliary problem (by
assuming, without loss of generality pij > 0 for all i, j)

P (a) : inf 1′x
s.t. P ′x ≥ 1,

where 1 in the cost function and in the right hand side are the vectors of the right dimensions
made by all 1’s. Then y is a solution of P (a) with optimal value v∗ if and only if x/v∗ is an
optimal strategy for Player I.

It is clear that, when translating the game theory problem in this form, and when considering
approximating games, we can only vary the matrix P , while the cost and the right hand side
functions are fixed.

Example 1.2 (approximation of a function). Let f, v1, ..., vn ∈ C([α, β]), α < β.We are interested
in approximating a function f by a linear combination of our data functions v1, ..., vn.We consider
this approximation problem under two criteria:
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(a) One-sided L1 approximation.
Let x ∈ Rn be such that

n∑
i=1

vi(t)xi ≥ f(t), for all t ∈ [α, β].

Then

‖f −
∑n

i=1 xivi‖1 =
∫ β
α [
∑n

i=1 vi(t)xi − f(t)] dt

=
∑n

i=1

(∫ β
α vi(t)dt

)
xi −

∫ β
α f(t)dt.

Setting

ci =

∫ β

α
vi(t)dt, i = 1, ..., n, (1)

we obtain readily that the best L1-approximation from above to f is
∑n

i=1 xivi, where x ∈ Rn is
an optimal solution of the semi-infinite problem

P1 : inf c′x
s.t.

∑n
i=1 vi(t)xi ≥ f(t), t ∈ [α, β].

The feasible set of the problem P1 coincides with the feasible set of P (a) by taking T = [α, β],
at = (v1(t), ..., vn(t)) , and bt = f(t). Notice however that (1) links left-hand side perturbations
with perturbations of the objective function.

(b) Two-sided L∞ uniform approximation.
In this case, a best uniform approximation to f is

∑n
i=1 xivi, where x ∈ Rn+1 is an optimal

solution of

P2 : inf xn+1

s.t. −xn+1 ≤ f(s)−
∑n

i=1 vi(s)xi ≤ xn+1, s ∈ [α, β].

The problem P2 can be written in the form P (a), by taking T = [α, β]× {0, 1},

a(s,k) =
(

(−1)k v1(s), ..., (−1)k vn(s), 1
)
, b(s,k) = (−1)k f(s), ∀ (s, k) ∈ T,

and c = (0, ..., 0, 1) ∈ Rn+1, but the perturbations of a are subject to certain constraints
Ω ⊂ C([α, β]) (e.g., the last component of a(s,k) cannot be perturbed). In this case, only suf-
ficient conditions for the continuity properties of F ,S and v could apply for the admissible
perturbations.

There are two precedents to this paper, dealing with perturbations of only a group (and not
all) of data. In particular, the first ([13]) deals with the problem of generic uniqueness of solution
of linear programming problems under perturbations of the matrix of the constraints; the second
one ([5]) deals with lower semicontinuity of the feasible set. Thus in particular our present work
continues the analysis of this last one.

The rest of this paper is organized as follows. Section 2 characterizes the sets domF , BF , UF ,
domS, BS , and US and their interiors in terms of the data (in this case a ∈ C (T,Rn)). Section 3
deals with conditions for F to be lower semicontinuous (lsc) or upper semicontinuous (usc) at
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a given a ∈ domF (observe that F is always closed graph). Section 4 tackles similar problems
regarding S and v (for which lower and upper semicontinuities must be understood in the sense
of real extended functions). It is important to note that the conditions guaranteeing continuity
properties of F , S and v at a given a are frequently expressed in terms of the membership of a to
the above sets and their interiors. Finally, Section 5 compares the results in this paper (left-hand
side perturbations) with those corresponding to the classical case of arbitrary perturbations.

2 Characterizations and stability properties

We begin this section by introducing the necessary notation. We denote by 0n the vector of
zeros and by ‖·‖ the Euclidean norm in Rn. The closed unit ball and the distance associated to
the above norm are denoted by B (0n; 1) and d, respectively. Given A ⊂ Rn, intA, clA or Ā,
bdA, spanA, aff A and convA denote the interior, the closure, the boundary, the linear subspace
spanned by A, the affine manifold spanned by A, and the convex hull of A, respectively, whereas
coneA := R+ convA denotes the convex conical hull of A ∪ {0n}. We also define the normal
cone of a nonempty closed set A ⊂ Rn at x̄ ∈ A by

NA(x̄) = {y ∈ Rn : y′(x− x̄) ≥ 0, ∀x ∈ A}.

The dimension of a convex set A is denoted by dimA and the epigraph (respectively, hypograph)
of a function f : Rn → R∪{±∞} by epi f (respectively, hypo f). We recall that f is a lower
semicontinuous convex function if and only if epi f is a closed convex set. In this case, the
subdifferential of f at a point x̄ ∈ dom f is given by the formula

∂f(x̄) = {y ∈ Rn : (y,−1) ∈ Nepi f (x̄, f(x̄))} (2)
= {y ∈ Rn : f(x)− f(x̄) ≥ y′(x− x̄), ∀x ∈ Rn}.

Given a nonempty closed convex set F we define the positively homogeneous functions

σF (q) = sup
x∈F

q′x and τF (q) = inf
x∈F

q′x. (3)

Notice that hypo τF = − epiσF and that both sets are closed convex cones of Rn+1. Further,
given a cone C we denote by

Co = {q ∈ Rn : q′x ≥ 0, ∀x ∈ C}

its polar. It is known that C ⊂ Coo with equality whenever the cone C is closed and convex.
Given a convex set A, another cone attached to it plays an important role in convexity. It is

the recession cone of A and it is defined as

A∞ = {x : a+ tx ∈ A ∀a ∈ A,∀t ≥ 0}.

Two convex cones associated with each a ∈ C (T,Rn) play an important role in this paper.
They are the moment and the characteristic cones of a, and are defined as follows:

M (a) := cone {at : t ∈ T}
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and
K (a) := cone {(at, bt) : t ∈ T}+ R+ (0n,−1) , (4)

respectively.
It follows readily from (4) that

F(a) =
{
x ∈ Rn : a′t x > bt, ∀t ∈ T

}
= {x ∈ Rn : (x,−1) ∈ K(a)o} . (5)

In a similar manner, in case F(a) 6= ∅ we also get

F(a)∞ =
{
u ∈ Rn : a′t u > 0, ∀t ∈ T

}
= {u ∈ Rn : (u, 0) ∈ K(a)o} . (6)

The following characterization of K(a) and its polar K(a)o will be used in the sequel. We
include a proof for completeness.

Proposition 2.1 (Characterization of K(a) and K(a)o). Assume F(a) 6= ∅. Then

clK(a) = hypo τF(a) = − epiσF(a) (7)

and
K(a)o = cone {(x,−1), (u, 0), x ∈ F(a), u ∈ F(a)∞} . (8)

Proof. Let (u, γ) ∈ K(a)o. If γ = 0, then a′t u > 0, ∀t ∈ T, that is u ∈ F(a)∞. If γ 6= 0, then
since R+ (0n,−1) ⊂ K(a) we deduce that γ < 0. It follows by (5) that

(u, γ) = |γ| (
u

|γ|
,−1) ∈ R+ (F(a)× {−1}) .

This shows that K(a)o is contained in the closed convex cone generated by (F(a)× {−1}) ∪
(F(a)∞ × {0}), while (5), (6) yield the opposite inclusion. Thus (8) holds.

Let us now notice that

F(a) =
{
x ∈ Rn : q′x > τF(a)(q), ∀q ∈ Rn

}
(9)

= {x ∈ Rn : σF(a)(p) ≥ p′x, ∀p ∈ Rn} .

Indeed, "⊃" in (9) follows directly from the definition of τ in (3), while "⊂" follows from the
Hahn-Banach theorem (F(a) is closed and convex). To establish (7), let (q, ξ) ∈ hypo τF(a) (i.e.
τF(a)(q) ≥ ξ) and notice that for any x ∈ F(a) we have

(x,−1)′(q, ξ) = q′x− ξ ≥ q′x− τF(a)(q) ≥ 0. (10)

Similarly, for any u ∈ F(a)∞ we have

(u, 0)′(q, ξ) = q′u ≥ 0. (11)

Indeed, if the above relation (11) were not true, since R+u ⊂ F(a) we would have τF(a)(q) = −∞
which contradicts the definition of ξ.

In view of (8), relations (10) and (11) show that hypo τF(a) ⊂ [K(a)o]o = clK(a). For the
opposite inclusion, let (q, ξ) ∈ clK(a) = [K(a)o]o . Then in view of (5) for any x ∈ F(a) we have
(q, ξ)′(x,−1) ≥ 0, that is, q′x ≥ ξ or equivalently (q, ξ) ∈ hypo τF(a). �
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Let us now fix a ∈ domF and denote by Ha the set of all hyperplanes in Rn+1 supporting
clK (a). Notice that every such hyperplane H ∈ Ha should pass through 0n+1 and is determined
by a normal vector (u, s) ∈ Rn+1 as follows:

H = {(q, ξ) ∈ Rn+1 : (u, s)′(q, ξ) = 0}. (12)

Choosing adequately the normal vector —namely, s < 0 or s = 0 and u ∈ F(a)∞�{0n}— we
may always assume that

clK (a) ⊂ H+ := {(q, ξ) ∈ Rn+1 : (u, s)′(q, ξ) ≥ 0}. (13)

Notice in particular that the above yields

(u, s) ∈ K (a)o . (14)

The following proposition describes more precisely the set Ha.

Proposition 2.2 (Characterization of Ha). Assume F(a) 6= ∅. Then the elements of Ha are
exactly the hyperplanes H that are determined, in the sense of (12)–(13), by a normal vector
which is either of the form

(x̂,−1), x̂ ∈ ∂σF(a)(0n) ⊂ F(a), (15)

or of the form
(u, 0), u ∈ F(a)∞�{0n}. (16)

Proof. LetH be determined by the normal vector (u, s) ∈ Rn+1�{0n+1}. Then since (0n,−1) ∈
clK (a) , relation (13) yields s ≤ 0. If s = 0, then by (13) again we get a′tu ≥ 0 for all t ∈ T,
thus u ∈ F(a)∞�{0n}. If s < 0, then setting x̂ = |s|−1 u we deduce that H is also determined
by the vector (x̂,−1). By (7) and (13) we obtain that (x̂,−1) ∈ NepiσF(a)

(0n, 0), that is, x̂ ∈
−∂σF(a)(0n). This yields σF(a)(p) ≥ p′x̂, for all p ∈ Rn, thus by (9) x̂ ∈ F(a). Conversely, one
easily verifies that (13) holds true for all hyperplanes H determined by vectors of the form (15)
or (16). �

We say that x̂ ∈ Rn is a Slater point of a whenever a′tx̂ > bt for all t ∈ T. In that case we
say that a satisfies the Slater condition (SC in short). If x̂ ∈ Rn is a Slater point of a, then
x̂ ∈ intF (a) and the converse holds whenever the constraint system {a′tx ≥ bt, t ∈ T} does not
contain the trivial inequality 0′nx ≥ 0. The following are known facts about the connections
among the Slater condition, the characteristic cone K (a) and the optimal value v (a):

1. If a satisfies SC, then K (a) is closed [8, Theorem 5.3];

2. a satisfies SC if and only if there exists a hyperplane H in Rn+1 supporting K (a) at the
unique point 0n+1;

3. Since, by [8, Theorem 8.1(ii)],

v (a) = sup {γ : (c, γ) ∈ clK (a)} = τF(a)(c),

it follows that v (a) ∈ R if and only if ({c} × R) ∩ clK (a) is a proper half-line.
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In the sequel of this section we want to identify the interior points of the sets UF ⊂ BF ⊂
domF and US ⊂ BS ⊂ domS, which are those parameters for which the corresponding property
(uniqueness of the feasible solution, boundedness of the feasible set, consistency, uniqueness of
the optimal solution, boundedness of the optimal set, and solvability, respectively) is preserved
by sufficiently small perturbations. To this aim, we collect below the known characterizations of
four of the above sets in terms of either M (a) or K (a), namely:

domF = {a ∈ C (T,Rn) : (0n, 1) /∈ clK (a)} [8, Corollary 3.1.1],
BF = {a ∈ domF : M (a) = Rn} [8, Theorem 9.3],
BS = {a ∈ domF : c ∈ intM (a)} [8, Theorem 8.1(vi)],
UF = {a ∈ domF : clK (a) is half-space} [8, Theorem 5.13(iii)].

Concerning domF , the following facts are also known [5, Proposition 4.1]:

1. domF = C (T,Rn) if and only if bt ≤ 0 for all t ∈ T ;

2. domF is an open proper subset of C (T,Rn) if and only if mint∈T bt > 0;

3. domF is closed in C (T,Rn) if and only if domF = C (T,Rn).

The next two propositions provide characterizations of the above sets in terms of Ha.

Proposition 2.3 (Characterization of domF , BF , UF ). .
(A) The following are equivalent :

(i) F(a) 6= ∅ (i.e. a ∈ domF);
(ii) (0n, 1) /∈ clK (a);
(iii) there exists H ∈ Ha such that (0n, 1) /∈ H.

(B) The following are equivalent :
(i) F(a) 6= ∅ and bounded (i.e. a ∈ BF );
(ii) (0n, 1) /∈ clK (a) and (0n,−1) ∈ intK(a);
(iii) Ha 6= ∅ and for all H ∈ Ha we have (0n, 1) /∈ H.

(C) The following are equivalent:
(i) F(a) is singleton (i.e. a ∈ UF );
(ii) Ha = {Ĥ} (singleton) and (0n, 1) /∈ Ĥ.

Proof. (A) Assume (i) holds. Pick any x ∈ F(a). Then by (5) we deduce that (x,−1) ∈ K(a)o,
which readily yields (0n, 1) /∈ clK (a) . Thus (i) implies (ii).

Now assume (ii), i.e. (0n, 1) /∈ clK (a). Then by the Hahn-Banach theorem, there exists
a hyperplane H of Rn+1 determined by a normal vector (u, s) ∈ Rn+1� {0n+1} that separates
strictly the singleton {(0n, 1)} from the closed convex cone clK (a). This yields in particular
that s 6= 0. With no loss of generality s < 0, that is, relations (12), (13) hold and (0n, 1) /∈ H+.
Thus, H ∈ Ha and (0n, 1) /∈ H. Thus (ii) implies (iii).

Assume now (iii) holds, that is, there exists H ∈ Ha determined by the vector (u, s) ∈
Rn+1� {0n+1} such that (0n, 1) /∈ H. The latter yields s 6= 0. By (13), (0n,−1) ∈ clK (a) ⊂ H+,
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whence s < 0. It follows that the vector (|s|−1 u,−1) = |s|−1 (u, s) also determines H and
(|s|−1 u,−1) ∈ K(a)o, thus by (5) |s|−1 u ∈ F(a).

[NB. For the equivalence (i)⇐⇒ (ii) see also [8, Cor. 3.11].]

(B) Assume (i) holds. Then by (A)[(i) =⇒ (iii)] we have Ha 6= ∅. Pick any H ∈ Ha
(determined by a normal vector (u, s) ∈ Rn+1� {0n+1} so that (12), (13) hold) and assume,
towards a contradiction, that (0n, 1) ∈ H ⊂ H+. Since (0n,−1) ∈ clK (a) ⊂ H+ we have
(0n, 1) , (0n,−1) ∈ H+ that is, s = 0 and (u, 0) ∈ K(a)o, see (14). By (5) u ∈ F(a)∞� {0n}
that is, F(a) is unbounded, a contradiction. Thus (iii) holds.

Let us now assume (iii). Then by (A)[(iii) =⇒ (ii)] we have (0n, 1) /∈ clK (a). If (0n,−1) ∈
clK (a)�intK(a), then there exists H ∈ Ha containing the line R (0n,−1) = R (0n, 1) a con-
tradiction. Thus (ii) holds.

Finally, if (ii) holds, then by (A)[(ii) =⇒ (i)] we have F(a) 6= ∅. Further, since clK (a)
contains a small ball around (0n,−1) , it cannot admit a "vertical" supporting hyperplane, that
is, if (u, s) determines a hyperplane H ∈ Ha then s 6= 0. In view of (6), F(a)∞ = {0n} and (i)
holds.

[NB. For the equivalence (i)⇐⇒ (ii) see also [8, Theorem 9.3].]

(C) By [8, Theorem 5.13(iii)] we have |F (a)| = 1 if and only if clK (a) is a half-space. The
latter is equivalent to |Ha| = 1 and since F (a) 6= ∅ the unique element Ĥ ∈ Ha should satisfy
(0n, 1) /∈ H . �

Proposition 2.4 (Characterization of domS, BS , US). .
(A) The following are equivalent :

(i) S(a) 6= ∅ (i.e. a ∈ domS);
(ii) there exists H ∈ Ha with (c, v (a)) ∈ H and (0n, 1) /∈ H;

(B) The following are equivalent :
(i) S(a) 6= ∅, bounded (i.e. a ∈ BS);
(ii) a ∈ domS and (0n, 1) /∈ H for all H ∈ Ha such that (c, v (a)) ∈ H.

(C) The following are equivalent :
(i) S(a) is singleton (i.e. a ∈ US);
(ii) there exists a unique H ∈ Ha such that (c, v (a)) ∈ H and (0n, 1) /∈ H.

Proof. (A) [(i) =⇒ (ii)] Recall that v (a) = τF(a)(c). Let x̄ ∈ S(a), i.e. c′x̄ = τF(a)(c) or
equivalently

(x̄,−1)′(c, τF(a)(c)) = 0. (17)

Since for all (q, γ) = hypo τF(a) we have c′x̄ ≥ τF(a)(c) ≥ γ, it follows that

(x̄,−1)′(q, γ) ≥ 0. (18)

Let H̄ be the hyperplane determined by (x̄,−1). Then (17) yields (c, τF(a)(c)) = (c, v (a)) ∈ H̄
and (7) yields clK (a) ⊂ H̄+, that is H̄ ∈ Ha. Obviously (0n, 1) /∈ H̄ (since (x̄,−1)′ (0n, 1) =
−1 6= 0) and (ii) follows.
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[(ii) =⇒ (i)] Let H ∈ Ha be determined by a vector (u, s) ∈ Rn+1� {0n+1} such that

clK (a) ⊂ H+, (c, v (a)) = (c, τF(a)(c)) ∈ H and (0n, 1) /∈ H.

It follows that s < 0, and H is also determined by the vector (x̂,−1) where x̂ = |s|−1 u. It follows
that

(x̂,−1)′(c, τF(a)(c)) = 0

or equivalently, x̂ ∈ S(a).

(B) Notice that (18) is equivalent to

(x̄,−1)′(p, β) ≤ 0, for all (p, β) ∈ epiσF(a) (19)

and holds true for every x̄ ∈ F(a). Further, x̄ ∈ S(a) if and only if (17) holds, that is,

(x̄,−1)′(−c, σF(a)(−c)) = 0.

Combining with (19) we deduce

x̄ ∈ S(a)⇐⇒ (x̄,−1) ∈ NepiσF(a)
(−c, σF(a)(−c)).

We deduce, in view of (2), that S(a) coincides with the subdifferential of the lower semicontinuous
convex function σF(a) at −c, namely,

S(a) = ∂σF(a)(−c).

Thus S (a) = ∂σF(a) (−c) is bounded if and only if −c ∈ int domσF(a), if and only if it does not
exist a "vertical" hyperplane supporting epiσF(a) = − clK (a) at the point

(
−c, σF(a) (−c)

)
=(

−c,−τF(a)(c)
)
(see (7)), or equivalently, it does not exist a "vertical" hyperplane supporting

clK (a) at
(
c, τF(a)(c)) = (c, v (a)

)
. Thus, any H ∈ Ha such that (c, v (a)) ∈ H is determined by

a vector (u, s) with s 6= 0 (in fact, s > 0). In particular (0n, 1) /∈ H.

(C) Let a ∈ domS. Then, S (a) = ∂σF(a) (−c) is a singleton set (i.e., the convex function σF(a)
is differentiable at −c) if and only if there exists a unique non-vertical hyperplane supporting
epiσF(a) = − clK (a) at (−c,−v (a)) , i.e. there exists a unique hyperplane supporting clK (a)
at (c, v (a)) with (0n, 1) /∈ H. �

We approach now the characterization of int domF , intBF , intUF , int domS, intBS , and
intUS .

Proposition 2.5 (Characterization of int domF). Let a ∈ C (T,Rn) .
(A) If bt ≤ 0 for all t ∈ T, then a ∈ int domF .

(B) If bt > 0 for some t ∈ T , then the following statements are equivalent :
(i) a ∈ int domF ;

(ii) a satisfies SC;
(iii) dimF(a) = n;

(iv) 0n+1 /∈ conv {(at, bt) : t ∈ T}.
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Proof. If bt ≤ 0 for all t ∈ T, then 0n ∈ F(a) for all a ∈ C (T,Rn), so that domF = C (T,Rn) . If
bt > 0 for some t ∈ T, the equivalence among (i), (ii), (iii) and (iv) follows from [5, Theorems 4.2
and 4.10]. �

Let us emphasize the interest of conditions like (iv) –which are easy to verify– in contrast
to conditions like (ii) requiring solving a linear semi-infinite program, or (iii) that can only be
verified in very specific cases.

Proposition 2.6 (Characterization of intBF ). Let a ∈ int domF . Then,

a ∈ intBF ⇐⇒ 0n ∈ int conv {at : t ∈ T} .

Proof. Assume that 0n ∈ int conv {at : t ∈ T} . Then there exists ε > 0 such that 0n ∈
int conv {at : t ∈ T} for all a ∈ C (T,Rn) with ‖a− a‖∞ < ε, in which case

M (a) = cone {at : t ∈ T} = Rn

and a ∈ BF . Hence, a ∈ intBF .
Assume now that 0n /∈ int conv {at : t ∈ T} . Then either 0n ∈ bd conv {at : t ∈ T} or 0n /∈

conv {at : t ∈ T}. In the first case there exists a hyperplane supporting conv {at : t ∈ T} at 0n
while in the second case there exists a hyperplane which strictly separates 0n and conv {at : t ∈ T}.
So, in both cases, there exists w ∈ Rn� {0n} such that w′x ≥ 0 for all x ∈ conv {at : t ∈ T}.
Take aεt := at + εw, t ∈ T , for ε > 0 small enough to guarantee that aε ∈ domF . We have
w′x ≥ ε ‖w‖2 ≥ 0 for all x ∈ conv {aεt : t ∈ T}. So, cone {aεt : t ∈ T} ⊂ {x ∈ Rn : w′x ≥ 0} and
aε /∈ BF . Hence, a /∈ intBF . �

In the next result we use the fact that, given a ∈ domF , F (a) = {0n} if and only if
clK (a) = Rn × R− (see [8, Theorem 5.10(ii)]).

Proposition 2.7 (Characterization of intUF ). Given a ∈ int domF the following statements
are equivalent :
(i) a ∈ intUF ;
(ii) F (a) = {0n} and 0n ∈ int conv {at : bt = 0, t ∈ T};
(iii) F (a) = {0n} in some neighborhood of a.

Proof. [(i) ⇒ (ii)] Assume that a ∈ intUF . If there is t ∈ T such that bt > 0, then a satisfies
dimF(a) = n (by Proposition 2.5 (B)), in contradiction with |F (a)| = 1. Thus, bt ≤ 0 for all
t ∈ T and so 0n ∈ F (a) i.e. F (a) = {0n} by the uniqueness assumption. Since a ∈ intUF , we
have F (a) = {0n} for all a belonging in some neighborhood of a. Hence, for any such a in this
neighborhood, clK (a) = Rn × R−.

Reasoning by contradiction, if 0n /∈ int conv {at : bt = 0, t ∈ T}, following the same argument
as in the proof of Proposition 2.6, we conclude the existence of w ∈ Rn� {0n} such that w′x ≥ 0
for all x ∈ conv {at : bt = 0, t ∈ T}. Defining aεt := at + εw, t ∈ T, we have w′x > 0 for all
x ∈ conv {aεt : bt = 0, t ∈ T} .

It now follows that
0n+1 /∈ conv {(aεt , bt) : bt = 0, t ∈ T} . (20)

Indeed, if 0n+1 ∈ conv {(aεt , bt) : bt = 0, t ∈ T}, we shall write 0n+1 =
∑
i∈I
λi
(
aεti , 0

)
,
∑
i∈I
λi = 1,

and λi > 0 for all i ∈ I (a finite subset of T ). Multiplying by w both members of
∑
i∈I
λia

ε
ti = 0n

we get a contradiction.
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Relation (20) entails 0n /∈ conv {aεt : t ∈ T} , whence 0n+1 /∈ conv {(aεt , bt) : t ∈ T} and the
corresponding convex cone K (aε) is closed (by [14, Corollary 9.6.1]). Observe that clK (aε) =
K (aε) 6= Rn × R− since

K (aε) ∩ {(x, 0) : x ∈ Rn} = cone {aεt : bt = 0, t ∈ T} 6= Rn,

as a consequence of (20), and consequently F (aε) 6= {0n} . Thus aε /∈ UF in contradiction with
a ∈ intUF .

[(ii) ⇒ (iii)] Assume now that F (a) = {0n} and 0n ∈ int (conv {at : bt = 0, t ∈ T}) . Since
0n ∈ int cone {at : bt = 0, t ∈ T} there exists ε > 0 such that 0n ∈ int cone {at : bt = 0, t ∈ T}
for all a ∈ C (T,Rn) such that ‖a− a‖∞ < ε. In that case cone {at : bt = 0, t ∈ T} = Rn and
clK (a) = Rn×R−. So, F (a) = {0n} for all a ∈ domF such that ‖a− a‖∞ < ε and a ∈ intUF .

[(iii)⇒ (i)] This assertion is trivial. �

Remark. In general, F (a) = {0n} and 0n ∈ int (conv {at : t ∈ T}) do not imply a ∈ intUF .
Indeed, consider, e.g. n = 1, and (at, bt) =

(
t,−t2

)
for all t ∈ T = [−1, 1] . The reader may

verify that F (ā) = {0}, and that given ε ∈
]
0, 12
[
, if aεt := at + ε for t ∈ T, F (aε) ⊃ [0, 4ε] .

Nevertheless, for T finite, F (a) = {0n} implies that 0n ∈ int conv {at : bt = 0, t ∈ T} and so
a ∈ intUF .

The following result deals with the set of interior points of domS. Before giving the precise
statement, we state a simple result, that will be repeatedly used in the sequel. Its proof is quite
simple and will be omitted.

Proposition 2.8. (A) Suppose F (a) 6= ∅. Then u ∈ 0+F if and only if a′tx ≥ 0 for all t ∈ T .
(B) Suppose S (a) 6= ∅. Then u ∈ S∞ if and only if

a′tx ≥ 0 for all t ∈ T, and c′u = 0.

In particular
S (a)∞ = [cone {±c; at, t ∈ T}]◦ , (21)

where [cone {±c; at, t ∈ T}]◦ denotes the positive polar of cone {±c; at, t ∈ T} .

Proposition 2.9. (i) If a ∈ int domS then S (a) is a nonempty bounded set.
(ii) If S (a) is a nonempty bounded set, then a is an interior point of domS in the relative

topology of domF .

Proof. (i) Let a ∈ int domS and suppose that S (a) is unbounded. Take u ∈ S (a)∞ such that
‖u‖ = 1. Then from Proposition 2.8 (B) we have that a′tu ≥ 0, t ∈ T, and c′u = 0.

Let aεt := at + εu, t ∈ T. By the assumption, aε ∈ domS for ε > 0 sufficiently small. We
observe that (aεt )

′ u = a′tu+ ε ≥ ε > 0 for all t ∈ T. Let µ > 0 be such that
∣∣(aεt )′ c∣∣ = |a′tc| ≤ µ

for all t ∈ T.
Take v := u− β c

‖c‖ , with 0 < β < ε‖c‖
µ . Then,

(aεt )
′ v = (aεt )

′ u− β (aεt )
′ c

‖c‖
≥ ε− βµ

‖c‖
> 0, for all t ∈ T,
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so that v is a non-zero recession direction of F (aε) such that c′v = −β ‖c‖ . Since v (aε) = −∞,
S (aε) = ∅ (contradiction).

(ii) Now we assume that S (a) 6= ∅ is bounded. Then, from Proposition 2.8, we get Rn =
cl cone {±c; at, t ∈ T} , i.e.

0n ∈ int cone {±c; at, t ∈ T} . (22)

From (22), there exists δ > 0 such that 0n ∈ int cone {±c; at, t ∈ T} for any a ∈ domF
such that ‖a− a‖∞ < δ. For such a parameter a we have cone {±c; at, t ∈ T} = Rn, so that
{0n} = [cone {±c; at, t ∈ T}]◦ . Thus, any nonempty sublevel set of the function x 7→ c′x in F (a)
is bounded, i.e. a ∈ domS. This completes the proof. �

Proposition 2.10 (Characterization of intBS). The following holds:

intBS = {a ∈ int domF : c ∈ intM (a)} .

Proof. Recall that BS = {a ∈ domF : c ∈ intM (a)} . The conclusion is immediate taking into
account that, if a ∈ domF satisfies c ∈ intM (a) = int cone {at, t ∈ T} , then c ∈ intM (a) =
int cone {at, t ∈ T} for all a sufficiently close to a. �

The characterization of intUS is given in the last section, in Corollary 4.12. We also refer to
[11] for a characterization of those parameters a ∈ C (T,Rn) such that P (a) has a strongly unique
solution for sufficiently small perturbations of all of the data (not only of a). This condition is
obviously sufficient for a ∈ intUS .

3 Stability of the feasible set

In the following sections, we shall study properties of semicontinuity and closedness of the feasible
and optimal set mappings. We recall here the necessary basic definitions. Given two topological
spaces X and Y , a set-valued mapping M : X ⇒ Y is called lower semicontinuous at x̄ if for
every open set O ⊂ Y such that M(x̄) ∩ O 6= ∅, there is a neighborhood I of x̄ such that for
every x ∈ I we haveM(x) ∩O 6= ∅. The mappingM is called upper semicontinuous at x̄ if for
every open set O ⊂ Y such thatM(x̄) ⊂ O, there is a neighborhood I of x̄ such that for every
x ∈ I we have M(x) ⊂ O. Finally, the mapping M is said to have a closed graph at x̄ if for
every xk → x̄ and yk → ȳ such that yk ∈ M(xk), it is ȳ ∈ M(x̄). Assuming now that X and
Y are metric spaces, we shall also use the concepts of lower (or inner) limit for the set-valued
mappingM at x ∈ domM,

Lix→xM (x) :=


y ∈ Y : ∀(xk)∞k=1 → x an associated k0 exists

such that (xk)
∞
k=k0

⊂ domM,

and ∃yk ∈M (xk) ∀k ≥ k0 such that yk → y

 ,

and of upper (or outer) limit ofM at x ∈ domM,

Lsx→xM (x) :=

{
y ∈ Y : ∃(xk)∞k=1 → x and (yk)∞k=1, y

k ∈M (xk) ,
such that yk → y

}
.

Observe that in the context of metric spaces (which is the case in this work), M is lower
semicontinuous at x̄ if and only ifM(x̄) ⊂ Lix→xM (x), whileM has a closed graph at x̄ if and
only ifM(x̄) ⊃ Lsx→xM (x). For more about these concepts see for instance [12, 1].
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If bt > 0 for some t ∈ T, then the lower semicontinuity of F at a ∈ domF is equivalent to any
of the conditions (i)− (iv) in Proposition 2.5 (B) (see [5, Theorem 4.2]), and any of them implies
that F|domF is lsc at a. Example 4.11 in [5] shows that the converse statement does not hold.
Forthcoming Proposition 3.2 will show that, if bt ≤ 0 for all t ∈ T, then SC is still a necessary
condition for the lower semicontinuity of F under mild conditions. This result is already known,
even when we relax continuity ([5, Proposition 4.5(ii)]), but the proof below is much simpler and
pops-up as a direct consequence of the following lemma.

Lemma 3.1 (Criterium for SC). Let a ∈ domF be such that there exist x ∈ Lia→aF(a) and
x̂ ∈ Rn such that x′x̂ > 0 and aε ∈ domF for aεt := at − εx̂, t ∈ T , and ε > 0 sufficiently small.
Then a satisfies SC.

Proof. Assume that a does not satisfy SC. Then, 0n+1 ∈ conv {(at, bt) , t ∈ T} . Let S ⊂ T, S
finite, and λt > 0 for all t ∈ S be such that

0n+1 =
∑
t∈S

λt (at, bt) ,
∑
t∈S

λt = 1. (23)

Let x and x̂ be two points as in the statement. Let ε > 0 be such that aε ∈ domF , with
aεt := at − εx̂, t ∈ T. From (23), we get

(−εx̂, 0) =
∑
t∈S

λt (at − εx̂, bt) ∈ K (aε) ,

so that (−εx̂)′ x ≥ 0 for all x ∈ F (aε) by Farkas’ Lemma ([8, Theorem 3.1]). Consider the half-
space H− = {x ∈ Rn : x̂′x ≤ 0} . We have F (aε) ⊂ H− for ε > 0 small enough while x /∈ H−.
This contradicts x ∈ Lia→aF(a). �

Proposition 3.2. Let F be lsc at a ∈ int domF . If F (a) 6= {0n} , then a satisfies SC.

Proof. Under the assumption, there will exist x ∈ F (a) ⊂ Lia→aF(a) such that x 6= 0n and, if
aεt := at− εx, t ∈ T, we have by assumption aε ∈ domF for ε > 0 small enough. The conclusion
is immediate from Lemma 3.1. �

We now analyze the connections between the set F(a) and the inner limit and the outer limit
of sequences F(ak), with ak → a, which are represented by Lik→∞F(ak) and Lsk→∞F(ak),
respectively. These connections allow us getting deeper results in the analysis of the lower semi-
continuity of the map F .

The next example shows that it is possible to have existence of parameters a ∈ domF and
sequences {ak} ⊂ domF such that ak → a as k →∞ and Lik→∞F(ak) = ∅.
Example 3.3. Let a : T = {1, 2, 3, 4, 5} → R3 be such that a1 = (1, 0, 0), a2 = (−1, 0, 0), a3 =
(1, 1, 0), a4 = (1, 0, 1), a5 = (0, 0,−1), and b = (1,−1, 2, 1, 0). Then F(a) = {(1, x2, 0) : x2 ≥ 1}.
We associate with k ∈ N the perturbed parameter ak such that ak1 = (1− 1

k ,
1
k2
, 0), ak2 = (−1, 0, 0),

ak3 = (1, 1, 0), ak4 = (1, 0, 1), and ak5 = (0, 0,−1). Since F(ak) = {(1, x2, 0) : x2 ≥ k} for all k ∈ N,
we get Lik→∞F(ak) = ∅. Observe that, according to [5, Proposition 4.12], F|domF is not lsc at
a (this is also obvious from F (a) * Lia→aF(a) = ∅).
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Proposition 3.4. Let a ∈ bd domF be such that a and b do not vanish simultaneously and
suppose there exists a sequence

(
ak
)∞
k=1
⊂ domF converging to a such that Lsk→∞F(ak) = ∅.

Then one of the following alternatives holds:
(i) a /∈ domF ;
(ii) F(a) is an unbounded set and intF(a) = ∅.

Proof. Assume that (i) does not hold, i.e. that a ∈ domF . Notice that Lik→∞F(ak) = ∅
since Lik→∞F(ak) ⊂ Lsk→∞F(ak) = ∅. Hence, F|domF is not lsc at a, so that intF(a) = ∅ by
[5, Theorem 4.10]. Now consider xk ∈ F(ak), k = 1, 2, .... Then the sequence (xk)∞k=1 cannot
have bounded subsequences, and thus we can assume (by passing possibly to a subsequence
kr) the existence of u = limr→∞

xkr

‖xkr‖ . Since (akrt )′xkr ≥ bt, it follows that a′tu ≥ 0. Thus

u ∈ F(a)∞� {0n} , and the set F(a) is unbounded. �

Proposition 3.5. Let a ∈ bd domF and suppose that Lik→∞F(ak) = ∅ for each sequence(
ak
)∞
k=1
⊂ domF converging to a, with ak 6= a for all k. Then a /∈ domF .

Proof. Suppose that a ∈ domF and let x ∈ F(a). Then x 6= 0n (otherwise, domF = C (T,Rn)
in contradiction with a ∈ bd domF). Taking ak := a+ 1

kx, k = 1, 2, ..., we get x ∈ F(ak) for all
k, so that Lik→∞F(ak) 6= ∅. �

In contrast with lower semicontinuity, the upper semicontinuity of F has a neat characteri-
zation.

Theorem 3.6 (Characterization of usc of F). F is usc at a ∈ domF if and only if F(a) is
either bounded or the whole of Rn.

Proof. Thanks to [9, Corollary 5.1.1], it suffices to prove that if F is usc at a ∈ domF and
F(a) 6= Rn, then F(a) is bounded.

Reasoning by contradiction, suppose that F(a) is unbounded. Then, there will exist u 6= 0n
such that the set

U :=
{
x ∈ bdF (a) : u′x ≥ 1

}
is unbounded. In fact, if we consider a sequence (xk)∞k=1 ⊂ bdF(a) such that

∥∥xk∥∥ → ∞ as
k →∞, and w.l.o.g. we suppose that xk/

∥∥xk∥∥→ u, then we shall write

lim
k→∞

u′xk = lim
k→∞

∥∥∥xk∥∥∥ = +∞,

and this shows that U is unbounded.
Now we take a sequence (zk)∞k=1 ⊂ U without any accumulation point.
It is clear that (

at +
1

k
u

)′
zk ≥ bt +

1

k
> bt, for all t ∈ T,

and there must exist a neighborhood Vk of zk such that Vk ⊂ B
(
zk; 1

k

)
and

Vk ⊂ F(ak), k = 1, 2, ...

where akt := at + 1
ku, k = 1, 2, ... On the other hand, as zk ∈ bdF(a), there will exist

yk ∈ Vk�F(a), k = 1, 2, ...
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The sequence (yk)∞k=1 neither has accumulation points because
∥∥yk − zk∥∥ ≤ 1/k, k = 1, 2, ... and

therefore
W := Rn�{y1, y2, ...}

is an open set such that
F(a) ⊂W and F(ak) *W.

This contradicts the upper semicontinuity of F as ak → a for k →∞. �

Corollary 3.7. Let a ∈ int domF be non-identically zero. Then, a ∈ intBF if and only if F is
usc on some neighborhood of a.

Proof. Since a ∈ domF is non-identically zero in some neighborhood of a, F is usc at a if and
only if a ∈ BF . �

4 Stability of the optimal set and the optimal value

This section is devoted to analyze the semicontinuity of the optimal set mapping S and of the
optimal value function.

Proposition 4.1 (Continuity properties of the value function). Given a ∈ C (T,Rn) the following
statements hold :
(i) If F is lsc at a, then v is usc at a;
(ii) if v is usc at a ∈ domF , then a ∈ int domF . If, additionally, bt > 0 for some t ∈ T, then F
is lsc at a.

Proof. (i) We can assume that a ∈ domF (otherwise v is trivially usc at a). Thus, v (a) ∈
R∪{−∞} . Take an arbitrary µ > v (a) .

Let
(
ak
)∞
k=1

be a sequence in C (T,Rn) such that ak → a as k → ∞. Let x ∈ F (a) be
such that c′x < µ. Since the open set V = {x ∈ Rn : c′x < µ} satisfies F (a) ∩ V 6= ∅, we have
F
(
ak
)
∩ V 6= ∅ for k large enough. For each xk ∈ F

(
ak
)
∩ V we have v

(
ak
)
≤ c′xk < µ. Thus,

v is usc at a.
(ii) Let µ > v (a) . Then there exists δ > 0 such that v (a) < µ for all a ∈ C (T,Rn) such that

‖a− a‖∞ < δ. This implies that a ∈ int domF which is equivalent to the lower semicontinuity
of F at a under the assumption that bt > 0 for some t ∈ T (by Proposition 2.5 ). �

Remark. The same proof of Proposition 4.1 shows that the lower semicontinuity of F|domF en-
tails the upper semicontinuity of v|domF . The converse is not true. The necessity of the additional
condition bt > 0 for some t, in Proposition 4.1(ii), follows from Example 4.7 below.

The following proposition provides a sufficient condition for the graph closedness of S at
a ∈ domS.

Proposition 4.2 (Closed graph of S). Given a ∈ C (T,Rn), any of the following conditions
guarantees that S is closed graph at a:
(i) v is usc at a and v (a) ∈ R;
(ii) S(a) = F(a).
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Proof. (i) Suppose that v is usc at a. This implies that for every sequence
(
ak
)∞
k=1
⊂ C(T,Rn)

converging to a, we have
lim supk→∞v(ak) ≤ v(a).

If Lsk→∞ S(ak) = ∅, the inclusion Lsk→∞ S(ak) ⊂ S(a) holds trivially. Alternatively, if
x0 ∈ Lsk→∞ S(ak), there will exist subsequences

(
akr
)∞
r=1

and xkr ∈ S(akr), r = 1, 2, ..., such
that limr→∞ x

kr = x0. This means

(akrt )′xkr ≥ bt, t ∈ T, r = 1, 2, ... (24)

and
c′xkr = v(akr), r = 1, 2, ... (25)

By taking limits in (24), we conclude that x0 ∈ F(a). Taking limits now in (25) one has

c′x0 = lim
r→∞

c′xkr = lim
r→∞

v(akr) ≤ lim supk→∞v(ak) ≤ v(a)

and necessarily x0 ∈ S(a). Consequently,

Lsa→a S(a) ⊂ S(a)

i.e. S is closed graph at a.
(ii) Assume that S(a) = F(a). Take sequences

(
ak
)∞
k=1

in domS and xk ∈ S(ak), k = 1, 2, ...,

converging to a and x0 respectively. Since S(ak) ⊂ F(ak), k = 1, 2, ..., and F is always closed
graph, one has x0 ∈ F(a) = S(a), and we are done. �

Corollary 4.3. If a ∈ domS and either F is lsc at a or S(a) = F(a), then S is closed graph
at a.

Proof. It is a straightforward consequence of Proposition 4.1 and Proposition 4.2. �

Proposition 4.4 (Characterization of lsc of the value function). Let a ∈ C (T,Rn) be such that
v (a) ∈ R. Then, v is lsc at a if and only if S(a) is a nonempty bounded set.

Proof. Suppose that S(a) is either empty or unbounded. Then the sublevel sets

{x ∈ Rn : a′tx ≥ bt, t ∈ T, c′x ≤ v (a) + ρ}, ρ > 0,

are unbounded, yielding the existence of u ∈ Rn such that ‖u‖ = 1 and a′tu ≥ 0 for all t ∈ T
and c′u = 0 (remember that v (a) ∈ R). Then, following the same argument that in the proof of
Proposition 2.9, we establish the existence of parameters aε → a as ε ↓ 0 with v (aε) = −∞, so
that v is not lsc at a. The converse statement is straightforward consequence of [8, Theorem 10.1].
�

Observe also that v is lsc at a ∈ domF if and only if v|domF is lsc at a because v is identically
+∞ outside domF .
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Example 4.5. Consider the problem in R2

P (a) : inf x2 s.t. t2x1 + x2 ≥ 2t, t ∈ [0, 1] .

It can be realized that F (a) = epih, where h (x1) = −x1 + 2 if x1 ≤ 1, and h (x1) = 1
x1

if x > 1.
Then, v (a) = 0 and S(a) = ∅. Since a satisfies SC (take, e.g., x̂ = (2, 2)), F is lsc at a and
a ∈ int domF . Let

akt =

{ (
1
k2
, 1
)
, t ∈

[
0, 1k

]
,(

t2, 1
)
, t ∈

[
1
k , 1
]
,

for each k ∈ N. We have ak ∈ C ([0, 1] ,Rn) and ak → a as k → ∞. Since v
(
ak
)

= −∞ for all
k ∈ N, v is usc but not lsc at a.

Theorem 4.6 (Characterization of continuity of the value function). Assume the existence of
t ∈ T such that bt > 0. Let a ∈ C (T,Rn) be such that v (a) ∈ R. Then

v is continuous at a⇔ S(a) 6= ∅ is bounded and a ∈ int domF .

Proof. If v is continuous at a, then a ∈ int domF and F is lsc at a by Proposition 4.1. Moreover,
S(a) is a bounded set by Proposition 4.4. The argument is reversible. �

Example 4.7. Let T = {1, 2, 3, 4}, n = 2, let a1 = (1, 0), a2 = (1,−1), a3 = (−1, 1), a4 = (2,−2).
Finally, let c = (0, 1) b = (0, 0, 0, 0). Then v(a) = 0 and F(a) = {(x, x) : x ≥ 0}. Let aε1 = (1, 0),
aε2 = (1,−1), aε3 = (−1, 1), aε4 = (2,−2(1 + ε)). Then v(aε) = 0 and F(aε) = {(0, 0)}, and this
shows that F is nor lsc at a, even with v continuous at a.

Corollary 4.8. Assume that v is finite-valued in a neighborhood of a ∈ C (T,Rn) . Then, a ∈
intBS if and only if v is lsc on some neighborhood of a. If, additionally, there exists t ∈ T such
that bt > 0, then, a ∈ intBS if and only if v is continuous on some neighborhood of a.

Proof. It is straightforward from Proposition 4.4 and Theorem 4.6. �

Observe that Example 4.7 also shows that the converse of Corollary 4.3 fails, since S is
constant in a neighborhood of a but F is not lsc at a and S(a) 6= F(a).

Proposition 4.9. Let a ∈ int domF be such that S(a) is a nonempty bounded set. If there exists
t ∈ T such that bt > 0, then S is usc at a.

Proof. Suppose that S is not equibounded around a. Let S(a) ⊂ B (0n, k0) , k0 ∈ N. Then for
each k ≥ k0 there exists ak ∈ C (T,Rn) such that

∥∥ak − a∥∥∞ < 1
k and xk ∈ S(ak) such that∥∥xk∥∥ ≥ k. Due to the continuity of v at a (Theorem 4.6), v

(
ak
)
→ v (a) .

We can assume w.l.o.g. that xk

‖xk‖ → u, with ‖u‖ = 1. Since
(
akt
)′
xk ≥ bt for all t ∈ T,

dividing by
∥∥xk∥∥ and taking limits as k →∞ we get a′tu ≥ 0 for all t ∈ T. So, on the one hand,

u ∈ F(a)∞. On the other hand, from c′xk = v
(
ak
)
, dividing again by

∥∥xk∥∥ and taking limits as
k →∞, we get c′u = 0. Thus u ∈ S(a)∞ (contradiction).

Moreover S is closed graph at a as a consequence of applying consecutively Proposition 4.1(i)
and Proposition 4.2(i), taking into account that the assumptions imply that F is lsc at a. Since
S is equibounded around a and S is closed graph at a, we conclude that S is usc at a (apply, for
instance, Lemma 6.3.2 in [1]). �
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Corollary 4.10. Assume there exists t ∈ T such that bt > 0. If a ∈ intBS , then S is usc on
some neighborhood of a.

The last result in this paper characterizes continuity (and lower semicontinuity) of S|domF through
the uniqueness of optimal solution of the nominal problem. So, this uniqueness is a necessary
condition for the lower semicontinuity of S.

Theorem 4.11 (Characterization of continuity of S|domF ). Given a ∈ C (T,Rn) , the following
statements are equivalent :
(i) S|domF is continuous at a ∈ domF ;
(ii) S|domS is lsc at a ∈ domS;
(iii) S (a) is a singleton set.

Proof. The implication (i)⇒ (ii) is trivial. Let us prove (iii)⇒ (i). If S (a) is a singleton and
W is an open set such that S (a) ∩W 6= ∅, obviously S (a) ⊂ W. Now we have that F|domF is
lsc at a by applying Proposition 4.5(i) in [5]. The remark after Proposition 4.1 establishes the
upper semicontinuity of v|domF , which itself implies that S|domF is closed graph at a following
the same argument that in the proof of Proposition 4.2 (i). By Theorem 10.1(ii) in [8], the
boundedness of S (a) entails the lower semicontinuity of v, and so of v|domF , at a. Reasoning as
in Proposition 4.9, it is easy to see that S|domF is equibounded, and we conclude that S|domF is
usc at a by applying Lemma 6.3.2 in [1]. Therefore, S (a) ⊂W for every a ∈ domF close enough
to a. By Proposition 2.9(ii), and since S (a) is a nonempty bounded set, a is an interior point of
domS in the relative topology of domF , entailing that S (a) 6= ∅ if a ∈ domF is close enough
to a; hence, S (a) ∩W = S (a) 6= ∅ and S|domF is also lsc at a.

We now prove that (ii) ⇒ (iii) by contradiction. Let a ∈ domS, with S (a) being a non-
singleton closed convex set. We discuss two possible cases:

Case 1: there exist x1, x2 ∈ S (a) such that dim span
{
x1, x2

}
= 2.

In this case take u ∈ Rn such that u′x1 = 0 and u′x2 < 0. Setting aεt := at + εu for t ∈ T,
we have x1 ∈ F (aε) for all ε > 0. Pick any x3 ∈ S (aε) if S (aε) 6= ∅, or alternatively, take
x3 ∈ F (aε) such that c′x3 < c′x1, otherwise.

Let us prove by contradiction that u′x3 ≥ 0. Indeed, assume u′x3 < 0. Since x3 ∈ F (aε) ,

(aεt )
′ x3 = a′tx

3 + εu′x3 ≥ bt for all t ∈ T,

so that x3 is a Slater point of a. Since x3 ∈ F(a), the possibility c′x3 < c′x1 is excluded and,
consequently, c′x3 = c′x1. But this is impossible as the optimal value of a would be attained at
a Slater point (which is an interior point). Thus

S (aε) ⊂ H+ :=
{
x ∈ Rn : u′x3 ≥ 0

}
while x2 /∈ H+. Since x2 ∈ S (a) we conclude that S|domS is not lsc at a.

Case 2: We now assume dimS (a) = 1 with 0n ∈ aff S (a) . We consider two subcases, either
0n ∈ S (a) or 0n /∈ S (a) .

If 0n ∈ S (a) , the previous argument applies taking x1 = 0n and u = x2 ∈ S (a) , with
x2 6= 0n. It remains to consider the case x1 ∈ S(a), x1 6= 0n and for some λ > 1 we have
λx1 ∈ S(a). In this case we define

cε := αε(c+ εx1) with αε :=
‖c‖

‖c+ εx1‖
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for ε ∈ I :=
[
0, ‖c‖‖x1‖

[
, where c + εx1 6= 0n. It is evident that the functions ε 7→ αε and ε 7→ cε

are continuous on I, where we set c := c0.

Let Tε be an n×n orthogonal matrix whose entries are continuous functions of ε on I and such
that Tεcε = c. Obviously, T0 is the identity n × n matrix. Associated with this transformation
we introduce the parameter aε ∈ C (T,Rn) defined as follows,

aεt = Tεat ∀t ∈ T,

and its corresponding perturbed problem

P (aε) : inf c′y s.t. (aεt )
′y ≥ bt, t ∈ T,

where we have replaced, for our convenience, the usual variable x by y.
If at 6= 0n, one has

‖aεt − at‖ = ‖(Tεat)− at‖ = ‖at‖
∥∥∥∥Tε( at

‖at‖

)
− at
‖at‖

∥∥∥∥
= ‖at‖

∥∥∥∥Tε( cε
‖cε‖

)
− cε
‖cε‖

∥∥∥∥
=
‖at‖
‖c‖
‖Tε (cε)− cε‖ =

‖at‖
‖c‖
‖c− cε‖

≤ ‖at‖
‖c‖

(
|1− αε| ‖c‖+ αεε

∥∥x1∥∥)
≤ µ

‖c‖
(
|1− αε| ‖c‖+ αεε

∥∥x1∥∥) ,
where µ := maxt∈T ‖at‖. If at = 0n, one has aεt = 0n, and from the last inequality, it turns out
that aε → a uniformly as ε ↓ 0.

Putting y = Tεx in P (aε) , and observing that

(aεt )
′y = a′tT

′
εy = a′tx, and

c′y = c′εT
′
εy = c′εx,

we get an equivalent problem (orthogonal transformations preserve scalar products), with deci-
sion variables x’s,

P̃ (aε) : inf c′εx s.t. a′tx ≥ bt, t ∈ T,

whose feasible set and optimal set are F̃ (aε) = T ′ε (F (aε)) and S̃ (aε) = T ′ε (S (aε)) , respectively.
Consider the open half spaceH+ =

{
x ∈ Rn :

(
x1
)′
x >

∥∥x1∥∥2} .We have d
(
λx1,Rn�H+

)
=

(λ− 1)
∥∥x1∥∥ > 0. So, by the continuity of T ′ε on I, there exists ε0 > 0, ε0 <

‖c‖
‖x1‖ , such that

d
(
T ′ε
(
λx1

)
,Rn�H+

)
>

(λ−1)‖x1‖
2 for all ε ∈ [0, ε0[ . Thus, the ball W := B

(
λx1 ;

(λ−1)‖x1‖
2

)
satisfies λx1 ∈W and T ′ε (W ) = T ′ε

(
λx1

)
+

(λ−1)‖x1‖
2 B (0n; 1) ⊂ H+, i.e.(

x1
)′

(x− x1) > 0, for all x ∈ T ′ε (W ) , for ε ∈ [0, ε0[ . (26)
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If x̃ ∈ T ′ε (W ) ∩ F(a), from c′(x1 − x̃) ≤ 0 (as x1 ∈ S(a)) and (26), one gets

c′ε(x
1 − x̃) = αε(c+ εx1)′(x1 − x̃)

= αε

{
c′(x1 − x̃)− ε

(
x1
)′

(x̃− x1)
}
< 0,

which shows that x̃ is not optimal for problem P̃ (aε) . So, T ′ε (W )∩ S̃(aε) = T ′ε (W ∩ S(aε)) = ∅,
i.e. W ∩ S(aε) = ∅. On the other hand, W ∩ S(a) 6= ∅ (remember that λx1 ∈ W ∩ S(a)), and
this contradicts the assumption that S|domS is lower semicontinuous at a.

The proof is complete. �

Corollary 4.12. The following equivalence holds: a ∈ intUS if and only if S is continuous on
some neighborhood of a.

5 Left-hand side vs. arbitrary perturbations

As already mentioned in the introduction, stability properties of a given (nominal) optimization
problem depend on the type of allowed perturbations and, even in cases where some results are
identical, the corresponding proofs may be quite different. In this section we compare two models
for the same problem:

inf c′x

s.t. a′tx ≥ bt, t ∈ T,

where T is a compact Hausdorff topological space T, a ∈ C (T,Rn) , b ∈ C (T,R) , and c ∈
Rn\ {0n} . Model I (developed in this paper) considers left-hand side perturbations while Model
II allows arbitrary perturbations of all the data, always preserving continuity of the coefficients
with respect to the index t ∈ T. The parameters spaces are Θ1 = C (T,Rn) , and respectively,
Θ2 = C (T,Rn)× C (T,R)× Rn. This latter is equipped with the following metric:

d
((
a1, b1, c1

)
,
(
a2, b2, c2

))
:= max

{∥∥c1 − c2∥∥ , maxt∈T
∥∥(a1t , b1t )− (a2t , b2t )∥∥} .

The sets UF , BF , US , BS , and the mappings F ,S : Θ2 ⇒ Rn and v : Θ2 → R∪{±∞} are defined
in an analogous manner for both models.

5.1 Stable properties

Regarding Model II, almost nothing can be said for the sets domF , domS, BF and UF con-
sidered in Section 2. The only known relevant result is a characterization of int domF , see [9,
Theorem 5.3.3(i)]: (

a, b, c
)
∈ int domF ⇔ SC holds.

The same characterization holds true for Model I whenever there exists t ∈ T such that bt > 0
(Proposition 2.5 (B)). Let us observe that the interior of other sets of parameters (e.g., those
providing bounded problems, inconsistent problems, etc.) has been characterized for Model II
[9, Theorem 5.3.3] but not for Model I.
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5.2 Stability of the feasible set

The characterization of the upper semicontinuity of F is exactly the same for both models,
but the argument is much more delicate for Model I (compare proofs of Theorem 3.6 and [6,
Theorem 3.1] or [3, Theorem 2.1(b)], for Models I and II, respectively).

For Model II, lower semicontinuity of F is equivalent to a long list of properties, e.g.,(
a, b, c

)
∈ int domF , SC or full dimension of F

(
a, b, c

)
([8, Theorem 6.9] extends and improves

[6, Theorem 4.1] and [3, Theorem 2.1(c)]). For Model I, however, the situation is much more
complicated: according to Proposition 3.2, if F is lsc at a ∈ int domF and F (a) 6= {0n} , then
a satisfies SC. Fortunately, the weaker property that F|domF is lsc at a in Model II has a neat
characterization whenever

(
at, bt

)
6= 0n+1 for all t ∈ T : dimF (a) ∈ {0, n} [5, Theorem 2.9].

5.3 Stability of the optimal set

Classical results on Model II establish that, given
(
a, b, c

)
∈ domS, the following statements

hold:

1. S is closed graph at
(
a, b, c

)
⇔ either F is lsc at

(
a, b, c

)
or F

(
a, b, c

)
= S

(
a, b, c

)
[6,

Theorem 3.2];

2. let
(
a, b, c

)
such that F

(
a, b, c

)
does not contain lines. Then, S is lsc at

(
a, b, c

)
⇔ F is

lsc at
(
a, b, c

)
and

(
a, b, c

)
∈ US [6, Theorem 4.2];

3. if S is usc at
(
a, b, c

)
, then S is closed graph at

(
a, b, c

)
. The converse is true whenever(

a, b, c
)
∈ BS [6, Theorem 3.3].

The corresponding results for Model I are less neat:

1. S is closed graph at a whenever either v is usc at a ∈ v−1 (R) or F (a) = S (a) (Proposi-
tion 4.2);

2. S is lsc at a ⇒ a ∈ US (from Theorem 4.11);

3. If a ∈ BS ∩ int domF and bt > 0 for some t ∈ T, then S is usc at a (Proposition 4.9).

5.4 Stability of the optimal value

To the authors’ knowledge, the unique work dealing with stability of the optimal value for
Model II is [3, Section 3], which actually deals with the stability of v |v−1(R), while Proposition 4.1,
Proposition 4.4 and Theorem 4.6, on Model I, relate to the value function v. So, no direct
comparison is possible.
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