
Cut-generating functions

Michele Conforti, University of Padova,
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Claude Lemaréchal, INRIA, Grenoble, and
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Abstract. In optimization problems such as integer programs or their
relaxations, one encounters feasible regions of the form {x ∈ R

n
+ : Rx ∈

S} where R is a general real matrix and S ⊂ R
q is a specific closed set

with 0 /∈ S. For example, in a relaxation of integer programs introduced
in [ALWW2007], S is of the form Z

q − b where b 6∈ Z
q . One would like

to generate valid inequalities that cut off the infeasible solution x = 0.
Formulas for such inequalities can be obtained through cut-generating
functions. This paper presents a formal theory of minimal cut-generating
functions and maximal S-free sets which is valid independently of the
particular S. This theory relies on tools of convex analysis.

Keywords: Integer programming; Convex analysis; Separation; Gener-
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1 Introduction

1.1 The separation problem, examples

This paper deals with sets of the form

X = X(R,S) :=
{
x ∈ R

n
+
: Rx ∈ S

}
, (1)

where
R = [r1, . . . , rn] is a real q × n matrix,
S ⊂ R

q is a closed set with 0 /∈ S .
(2)

In other words, our set X is the intersection of a closed convex cone (the non-
negative orthant) with a reverse image by a linear mapping. Since 0 6∈ S, it is
not difficult to show that 0 does not lie in the closed convex hull of X .

We are interested in separating 0 from X : we want to generate cuts, i.e.
inequalities valid for X , which we write as

c>x > 1 , for all x ∈ X . (3)

Geometrically, we want to generate half-spaces H+ =
{
x ∈ R

n : c>x > 1
}

(note: 0 /∈ H+) satisfying H+ ⊃ X . This paper presents an overview of a formal
theory of the functions that generate the coefficients cj of such cuts.
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Let us first give some motivation for our model (1), (2), arising in mixed
integer programming. Starting from a polyhedron

P =
{
(x, y) ∈ R

n
+
× R

m : Ax+ y = b
}

(nonnegativity of the y-variables can also be imposed), assume that b /∈ Z
m.

Several situations have been considered in the literature.

Example 1 (An integer linear program). Suppose first that all variables must be
integers: the set of interest is P ∩{Zn×Z

m}, i.e. the set of points (x, y = b−Ax)
such that x ∈ Z

n
+
and b−Ax ∈ Z

m. Our problem has the form (1), (2) if we set

q = n+m, R =

[
I

−A

]
, S = Z

n × Z
m −

[
0
b

]
. (4)

Since b /∈ Z
m, the above S is a closed set not containing the origin; (4) is the

model considered by Gomory [G1969]. �

Example 2 (A mixed integer linear program). Consider now P ∩ {Rn × Z
m}:

the set of interest is the set of points (x, y = b − Ax) such that x ∈ R
n
+
and

b−Ax ∈ Z
m. Then (4) is replaced by

q = m, R = −A , S = Z
m − b ,

which is the model considered by Andersen, Louveaux, Weismantel and Wolsey
[ALWW2007]. �

We will retain from the above two examples the asymmetry between S (a very
particular and highly structured set) and R (an arbitrary matrix). Keeping this
in mind, we will consider that (q, S) is given and fixed, while (n,R) is instance-
dependent data: our cutting problem can be viewed as parametrized by (n,R). A
number of papers have appeared in recent years, dealing with the above problem
with various special forms for S, see [ALWW2007], [DW2010], [BCCZ2010] and
references therein.

1.2 Cut-generating functions and S-free sets

Let (q, S) be given and fixed. To generate cuts in the present situation, it would
be convenient to have a mapping, taking instances of (1), (2) as input, and
producing cuts as output. What we need for this is a function

R
q 3 r 7→ ρ(r) ∈ R .

We will apply the function ρ to the columns rj of R (an arbitrary matrix, with
an arbitrary number of columns) to produce the coefficients cj := ρ(rj) of a
cut (3). In summary, we require that our ρ satisfies, for any instance X of (1),

x ∈ X =⇒
n∑

j=1

ρ(rj)xj > 1 . (5)
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Such a ρ can be called a cut-generating function (cgf). So far, a cgf is a rather
abstract object; but the (vast!) class of functions from R

q to R can be drastically
reduced from the following observations.

(i) First consider in (3) a vector c′ with c′j 6 cj for j = 1, . . . , n; then c′>x 6

c>x for any x > 0. If c′ is a cut, it is tighter than c in the sense that it
cuts a bigger portion of Rn

+
. We can impose some “minimal” character to

a cgf, in order to reach some “tightness” of the resulting cuts.

(ii) Next observe that changing R to tR (t > 0) divides X by t; the set of cuts
is just multiplied by t. Since we seek a minimal ρ, we can impose without
loss of generality ρ(tr) = tρ(r), for any r ∈ R

q and t > 0: only positively
homogeneous cgf’s are of interest.

(iii) It can be proved that the closed convex hull of a cgf ρ is again a cgf.
Moreover, if ρ is positively homogeneous, then the closed convex hull of ρ
is positively homogeneous as well.

A function is sublinear if it is convex and positively homogeneous. The above
observations show that the class of sublinear functions suffices to generate all
relevant cuts; a fairly narrow class indeed, which is fundamental in convex ana-
lysis. Sublinear functions are in correspondence with closed convex sets and in
our context, such a correspondence is based on the mapping ρ 7→ V defined by

V = V (ρ) :=
{
r ∈ R

q : ρ(r) 6 1
}
. (6)

Sublinear functions ρ : Rq 7→ R are convex, continuous and satisfy ρ(0) = 0,
which implies that V (ρ) in (6) is a closed convex neighborhood of 0 in R

q. The
set V turns out to be a cornerstone: via Theorem 1 below, (6) establishes a
correspondence between the (sublinear) cgf’s and the so-called S-free sets.

Definition 1 (S-free set). Given a closed set S ⊂ R
q not containing the origin,

a closed convex neighborhood V of 0 ∈ R
q is called S-free if its interior contains

no point in S: int (V ) ∩ S = ∅. �

Theorem 1. Let ρ be a sublinear function from R
q to R and V (ρ) the closed

convex neighborhood of 0 ∈ R
q defined in (6). Then ρ is a cgffor (1), (2) if and

only if V (ρ) is S-free.

As a result, the cut generation problem for X can alternatively be studied
from a geometric point of view, involving sets V instead of functions ρ. This
situation, common in convex analysis, is often very fruitful.

Definition 2 (cgf as representation). Let V ⊂ R
q be a closed convex neigh-

borhood of the origin. A representation of V is a (finite-valued) sublinear function
ρ satisfying (6). We will say that ρ represents V . A (sublinear) cut-generating
function for (1), (2) is a representation of an S-free set. �

A sublinear ρ represents a unique V = V (ρ), well-defined by (6). One easily
checks

ρ 6 ρ′ =⇒ V (ρ) ⊃ V (ρ′) . (7)
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Hence, minimality of ρ corresponds to maximality of V . By contrast, the mapping
ρ 7→ V (ρ) in (6) is many-to-one and therefore has no inverse. There is a difficulty
here: a given neighborhood V may have several representations, and we are
interested in the small ones.

1.3 Goals and outline of the paper

The aim of this paper is to present the main points of a formal theory of minimal
cut-generating functions and maximal S-free sets which is valid independently
of the particular S. This theory of cut-generating functions gathers, generalizes
and synthesizes some existing results (see [BCZ2011], [DW2010], [BCCZ2010]
and references therein). The complete theory is presented in an extended version
of this paper [CCDLM2013]; in particular, the proofs of the results are omitted
here, so the reader is referred to [CCDLM2013] to see precisely how things
combine.

The paper is organized as follows. We study the mapping (6) in Section 2.
We show that the pre-images of a given V (the representations of V ) have a
unique maximal element γV and a unique minimal element µV ; in view of (i)
above, the latter is the relevant inverse of ρ 7→ V (ρ). Then we study in Section 3
the correspondence V ↔ µV . We show that different concepts of minimality
come into play for ρ in (i). Geometrically they correspond to different concepts
of maximality for V . We also show that they coincide in a number of cases.

2 Largest and smallest representations

In this section, we study the representation operation introduced in Definition 2
and its geometric counterpart. We first recall some basic definitions of convex
analysis; The monograph [HL2001] (especially its Chapter C) is suggested for an
elementary introduction, while textbooks [HL1993,R1970] are more complete.

2.1 Basic definitions of convex analysis

The support function of a set G ⊂ R
q is

σG(r) := sup
d∈G

d>r . (8)

It is seen to be sublinear, to grow when G grows, but to remain unchanged if
G is replaced by its closed convex hull: σG = σconv(G). Conversely, any sublin-
ear function ρ is the support function of a closed convex set, unambiguously
defined by

G = Gρ :=
{
d ∈ R

n : d>r 6 ρ(r) for all r ∈ R
q
}
;

we say that ρ supports G. Note that a sublinear function ρ is finite valued if and
only if ρ is the support function of a bounded closed convex set.
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Another relevant object for our purpose is the gauge

R
q 3 r 7→ γV (r) := inf {λ > 0 : r ∈ λV } (9)

of our neighborhood V . In fact, results in convex analysis [HL2001, TheoremC.1.2.5
and PropositionC.3.2.4] show that γV
– also appears as a representation of V

– is the support function of the polar set of V defined by

V ◦ :=
{
d : d>r 6 1 for all r ∈ V

}
=

{
d : σV (d) 6 1

}
. (10)

2.2 Prepolars and representations

From now on in this section, we are given a subset V of Rq, which is a closed
convex neighborhood of the origin. If G is such that G◦ = V , we can say that
G is a prepolar of V , i.e. that σG represents V in the sense of Definition 2.
As already mentioned, V may have several representations, and there may be
severalG’s such that G◦ = V , that is, severalG’s may be prepolars of V . Because
(V ◦)◦ = V , the standard polar V ◦ is itself a prepolar – which is somewhat
confusing – and turns out to be the largest one; or equivalently γV turns out to
be the largest representation of V , as shown by Theorem 2 below. This theorem
states furthermore that V has also a smallest prepolar, or equivalently a smallest
representation; keeping (i) of Section 1 in mind, this is exactly what we want.
This result is actually [BCZ2011, Theorem1]; we give a different treatment here.

The following geometric objects turn out to be relevant:
{
Ṽ ◦ :=

{
d ∈ V ◦ : d>r = σV (d) = 1 for some r ∈ V } ,

V̂ ◦ :=
{
d ∈ V ◦ : σV (d) = 1

}
.

(11)

For later use, we illustrate this construction with a simple example.

A
C

B

r1

r2

V

Fig. 1. Constructing Ṽ ◦ or V̂ ◦

Example 3. With

[
r1

r2

]
∈ R

2, take for V the polyhedron given by the following

three inequalities (see Figure 1):

r1 6 1 , r2 6 1 , r2 6 2 + r1 .
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Recalling that extreme points of V ◦ correspond to facets of V , we see that
V ◦ has the three extreme points A, B, C defined by the equation d>r = 1,
for r respectively on the three lines making up the boundary of V . We obtain
A = (1, 0), B = (0, 1), C = 1

2 (−1, 1).

In this example, Ṽ ◦ and V̂ ◦ are the same set, namely the union of the two
segments [A,B] and [B,C]. To obtain V ◦, convexify them with the fourth point
0; if V had a fourth constraint, say r2 > −1, then this fourth point would be
moved down to D = (0,−1) – and would be part of the sets Ṽ ◦ and V̂ ◦. �

Because 0 ∈ intV , the definition (8) of a support function shows that σV is
positive whenever it is finite: for some ε = ε(V ) > 0,

ε‖d‖ 6 σV (d) 6 +∞ for all d ∈ R
q . (12)

The two sets in (11) are therefore bounded. Besides, the next proposition shows
that they differ very little.

Proposition 1. We have Ṽ ◦ ⊂ V̂ ◦ ⊂ cl
(
Ṽ ◦

)
. It follows that V̂ ◦ and Ṽ ◦ have

the same closed convex hull.

The closed convex hull revealed by this proposition deserves a notation, as
well as its support function: we set

V • := conv
(
Ṽ ◦

)
= conv

(
V̂ ◦

)
and µV := σV • = σ

Ṽ ◦ = σ
V̂ ◦ (13)

(in Figure 1, V • is the triangle conv (A,B,C)). In fact, the next result shows that
µV is the smallest representation we are looking for. From now on, we assume
V 6= R

q (otherwise V • = ∅, µV ≡ −∞, a degenerate situation which is trivial).

Proposition 2 (Smallest representation). Any ρ representing V satisfies
ρ > µV . Geometrically, V • is the smallest closed convex set whose support func-
tion represents V .

Thus, V does have a smallest representation, whose supported set is V •. On
the other hand, it is interesting to link it with V ◦. The intuition suggested by
Figure 1 is confirmed by the following result.

Proposition 3. Appending 0 to V • gives the standard polar:

γV = max
{
µV , 0

}
i.e. V ◦ = conv

(
V • ∪ {0}

)
= [0, 1]V • .

We actually have an equivalence.

Theorem 2 (Representations). A sublinear function ρ represents V if and
only if it satisfies

µV 6 ρ 6 γV . (14)

Geometrically, the support function of a set G represents V if and only if G is
sandwiched between the two extreme prepolars of V :

G◦ = V ⇐⇒ V • ⊂ conv(G) ⊂ V ◦ .
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3 Minimal cgf’s and maximal S-free sets

3.1 Minimal cgf’s

In our quest for small cgf’s, the following definition is natural.

Definition 3 (Minimality). A cgf ρ is called minimal if any cgf ρ′ 6 ρ is
ρ itself. �

A minimal cgf is certainly a smallest representation:

ρ is a minimal cgf =⇒ ρ = µV (ρ) = σV (ρ)• (15)

(indeed, Theorem 2 states that µV (ρ) represents the same set V (ρ) as ρ – and is
therefore a cgf if so is ρ).

If ρ is a minimal cgf, V (ρ) must of course be a special S-free set. Take for
example S = {1} ⊂ R and the S-free set V = [−1,+1]; ρ(r) := |r| is the smallest
(because unique) representation of V but ρ is not minimal: ρ′(r) := max {0, r}
is also a cgf, representing V ′ =] − ∞,+1]. From (7), a smaller ρ describes a
larger V ; so Definition 3 has its geometrical counterpart:

Definition 4 (Maximality). An S-free set V of Definition 1 is called maximal
if any S-free set V ′ ⊃ V is V itself. �

Actually, this “duality” is deceiving, as the two definitions do not match:
the set represented by a minimal cgf need not be maximal. Here is a trivial
example.

Example 4. When ρ is linear, the property introduced in Definition 3 holds va-
cuously: no sublinear function can properly lie below a linear function. Thus,
any linear cgf ρ is minimal; yet, a linear ρ represents a neighborhood V (ρ) (a
half-space) which is S-free but has not reason to be maximal. See Figure 2: with
n = 1, the set V = ]−∞, 1] (represented by ρ(x) = x) is {2}-free but is obviously
not maximal. �

0

V

S = {2}1

Fig. 2. A linear cgf is always maximal

Note that, if the half-space represented by a linear function is S-free, it actu-
ally separates S from 0. A simple assumption such as 0 ∈ convS will therefore
rule out the above counterexample; but Example 5 below will reveal a more
serious deficiency. So a subtlety is necessary, indeed the smallest representation
of a maximal V enjoys a stronger property than minimality.
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3.2 Strongly minimal cgf’s

Let ρ be a cgf, which represents via (6) the set V = V (ρ). The gauge γV (ρ) is
then a function of ρ and here comes the correct substitute to Definition 3.

Definition 5 (Strongly minimal cgf). A cgf ρ is called strongly minimal
if any cgf ρ′ 6 γV (ρ) satisfies ρ′ > ρ.

Needless to say, the class of strong minimality cgf’s is a subclass of the class
of minimal cgf’s. Example 5 below will complement Example 4, showing that
the restriction is a real one. At any rate, strong minimality turns out to be the
appropriate definition in general:

Theorem 3 (Strongly minimal ⇔ maximal). An S-free set V is maximal
if and only if its smallest representation µV of (13) is a strongly minimal cgf.

In fact, the concept of minimality involves two properties from a sublinear
function:

– it must be the smallest representation of some V (recall (15)),

– the neighborhood V must enjoy some maximality property.

In view of the first property, a cgf can be imposed to be not only sublinear
but also to support a set that is a smallest prepolar. Then Definition 3 has a
geometric counterpart: minimality of ρ = µV = σV • means

G′ ⊂ V • and (G′)◦ is S-free =⇒ G′ = V •, i.e. (G′)◦ = V .
[ρ′ = σG′ 6 µV ] [ρ′ is a cgf] [ρ′ = ρ]

Likewise for Definition 5: strong minimality of ρ = γV = σV ◦ means

G′ ⊂ V ◦ and (G′)◦ is S-free =⇒ G′ ⊃ V •, i.e. (G′)◦ ⊂ V .
[ρ′ = σG′ 6 γV ] [ρ′ is a cgf] [ρ′ > ρ]

These observations allow some more insight into the (·)• operation:

Proposition 4. Let ρ = µV = σV • be a minimal cgf. If an S-free neighborhood
W satisfies W • ⊂ V •, then W = V .

Thus, the trouble necessitating strong minimality lies in (7): even though
the reverse implication holds when ρ = γV , it does not hold for ρ = µV : the
mapping V 7→ V • is not monotonic; and of course, this phenomenon is linked to
the presence of the recession cone V∞. The following example helps for a better
understanding.

Example 5. In Example 3, take for S the union of the three lines given respec-
tively by the three equations

r1 = 1 , r2 = 1 , r2 = 2 + r1 ,

so that V is clearly maximal S-free.
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V •

t

At

W •

Vt rA

rC

B

C
At

B

C

Fig. 3. The mapping V 7→ V • is not monotonic

Now shrink V to Vt (left part of Figure 3) by moving its right vertical bound-
ary to r1 6 1−t. Then A is moved to At =

(
1

1−t
, 0
)
; there is no inclusion between

the new V •
t = conv (At, B, C) and the original V • = conv (A,B,C); this is the

key to our example.
Let us show that µVt

is minimal, even though Vt is not maximal. Take for
this a cgf ρ 6 µVt

, which represents an S-free set W ; by (7), W ⊃ Vt. With the
notation (13), we therefore have

σW• = µW 6 ρ 6 µVt
= σV •

t
, i.e., W • ⊂ V •

t

and we proceed to show that equality does hold, i.e. the three extreme points of
V •
t do lie in W •.

– If At /∈ W •, the right part of Figure 3 shows that W • is included in the open
upper half-space. Knowing that

W =
(
W •

)◦
=

{
r : d>r 6 1 for all d ∈ W •

}

(see the end of Section 2), this implies that the recession cone W∞ has a vector
of the form rA = (ε,−1) (ε > 0); W cannot be S-free.

– If C /∈ W •, there is rC ∈ R
2 such that C>rC > σW•(rC) = µW (rC) (we denote

also by C the 2-vector representing C). For example rC = (−2, 0) ∈ bd (V )
(see Figure 3), so that

C>rC = 1 > σW•(−2, 0) = µW (−2, 0) .

By continuity, µW (−2 − ε, 0) 6 1 for ε > 0 small enough. Because µW rep-
resents W , this implies that (−2 − ε, 0) ∈ W ; W (which contains Vt) is not
S-free.

– By the same token, we prove that B ∈ W • (the separator rB = (0, 1) ∈ bd (V )
does the job).

We have therefore proved that W • = V •
t , i.e µW = µVt

, i.e. µVt
is minimal. �

Examples 4 and 5 show that minimality does not imply strong minimality in
general. On the other hand, the following theorem provides two favorable cases
when this implication holds.
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Theorem 4. Suppose 0 ∈ Ŝ := convS and that µV is minimal. Then µV is
strongly minimal under any of the following conditions:

(i) V∞ ∩ Ŝ∞ = {0} (in particular S bounded),

(ii) V∞ ∩ Ŝ∞ = L ∩ Ŝ∞ where L stands for the lineality space of V , and
Ŝ = G+ Ŝ∞ where G in any nonempty bounded set.

Theorem 4 generalizes several earlier results. The special case where S is a
finite set of points in Z

q − b was first considered by Johnson [J1981] and more
recently by Dey and Wolsey [DW2010]. Theorem 4(ii) was proven by [DW2010]
and [BCCZ2010] in the special case where S = P ∩ (Zq − b) for some rational
polyhedron P .

3.3 Asymptotically maximal sets

Finally a natural question arises: how far from being maximal are the S-free sets
represented by minimal cgf’s? For this, we introduce one more concept, which
does not seem to have arisen in the literature on cut-generating functions.

Definition 6. An S-free set V of Definition 1 is called asymptotically maximal
if any S-free set V ′ ⊃ V satisfies V ′

∞ = V∞.

Then we have a partial answer to the question about S-free sets represented by
minimal cgf’s.

Theorem 5 (Minimal ⇒ asymptotically maximal). The S-free neighbor-
hood represented by a minimal cgf is asymptotically maximal.
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