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It is commonly accepted that nonsmoothness arises naturally in optimiza-
tion: even if one considers a smooth data model, several operations associated
with control or optimization destroy the initial differentiability and lead to the
need of employing nonsmooth techniques. For example, considering the min-
imization of a nonsmooth function, it has been observed that, in general, the
minimum occurs at a point of nondifferentiability. This having said, even the
mere formulation of optimality conditions needs to be revised in the light of
nonsmooth analysis.

The survey starts its tour from the class of convex functions and moves pro-
gressively to the classes of locally Lipschitz and lower semicontinuous functions.
It mainly deals with topics as subdifferential calculus, optimality conditions,
regularity and semismoothness, set regularity, graphical derivatives, extreme
principle and second order nonsmooth theory. It also devotes a paragraph to
the interesting theory of quasi-differentiability developed by A. Rubinov and V.
Demyanov for the class of DC functions.

Convex functions and subdifferential theory have their origins in the sem-
inar work of J.-J. Moreau in nonregular mechanics, followed by a systematic
treatment of T. Rockafellar in the early 60’s. These functions enjoy good dif-
ferentiable properties1 and form a first class of nonsmooth functions for which
everything works good. In particular, convex functions admit a natural defini-
tion of subdifferential and of generalized derivative (as a support function) and
enjoy robust calculus rules. These rules have been served as a model for the the-
ory of maximal monotone operators and led to the definitions of the variational
sum or of the extended sum of maximal monotone operators (see [13], for ex-
ample). Furthermore, convex functions can be completely determined by their
subdifferentials: a classical result of T. Rockafellar ([22]) asserts that equality of
subdifferentials (that is, ∂f = ∂g) implies equality of functions up to a constant
(that is, f = g + c), provided at least one of f and g is a priori assumed to be
convex. For an extension of this result we quote [24]. Let us also mention the
remarkable nonsmooth integration result of Rockafellar asserting that a given
multivalued operator T : Rn ⇒ Rn is the subdifferential of a convex function f
if and only if it is maximal cyclically monotone2. On the other hand, besides the
almost everywhere differentiability of locally Lipschitz functions (Rademacher
theorem) and their the differentiability on a dense set (Preiss theorem, see [21]),
the Clarke subdifferential does not determine in a unique manner the function

1Convex continuous functions on reflexive Banach spaces are generically differentiable [4].
2This result is valid in a general normed space.
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(see [7]), unless the function is subdifferentially regular. This having said, it is
not surprising that the majority of results concerning locally Lipschitz functions
are naturally restricted to subclass of subdifferentially regular functions, as for
example the important class of lower-C1 functions introduced by Spingarn in
[23]. Lower-Ck functions, that is, functions that are locally representable as the
maximum of a continuously compactly parameterized family of Ck functions
defined on the same open set, are a natural extension of both convex continuous
functions and of Ck functions and enjoy good stability and subdifferentiability
properties. Integration of multivalued operators for operators satisfying a weak
cyclic monotonicity in the spirit of [22] and giving rise to these functions are
established in [15], [11]. Nonsmooth integration results for operators associated
to the class of essentially smooth functions are given in [6]. The use of nor-
mal cones relates naturally nonsmooth functions to their epigraphs and leads to
several classes of set regularity (see [3] for a recent survey).

The subject is vast. As observed by the author, it is practically impossible to
deal with or even to mention all possible aspects or developments. The author
gives at the end a list of relevant topics that are not treated for practical reasons.
Let me add some more topics in that list: the development and implementation
of the bundle method for the minimization of nondifferentiable functions ([16]),
the important applications of the monotone (or hypomonotone) multivalued
operators to the proximal algorithm (see [10] and references therein), the theory
of differential inclusions for such operators (see [5]) and its applications to the
non-regular mechanics (see [1], for example) or to the Moreau sweeping process
(see [9], for example).

Another issue is the overall presentation, which of course can neither be
unique nor take into consideration all historical or further developments. Let us
mention that an alternative development could have been based on the Ekeland
Variational Principle [12], followed by the Borwein-Preiss smooth variational
principle [8], and/or the nonsmooth Mean Value Theorem of Lebourg for locally
Lipschitz functions or of Zagrodny for lower semicontinuous functions (see [25]
or [2]).

Let us finally mention that nonsmoothness seldom occurs in a random man-
ner, but instead often has an underlining structure which can be exploited in
optimization. A first step towards this direction has been made by the INRIA
team of numerical optimization, headed by C. Lemaréchal, with the introduc-
tion of the UV-Lagrangian together with a first conceptual algorithm for convex
functions (see [17], for details). This led to an implementable algorithm (called
the fast-track algorithm), proposed by R. Mifflin and C. Sagastizábal (see [20],
for example). Inspiring by similar considerations, A. Lewis introduced the no-
tion of partial smoothness (see [18], [14]) in order to unify several structured
optimization problems considered in previous works of J. Burke, M. Overton,
F.Oustry and others. As a recent development it is worthmentioned the use of
real algebraic geometry techniques in optimization (see [19], for example). Sim-
ilar attempts are currently under development in other fields as game theory,
optimal control and dynamical systems.
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[4] Asplund, E., Fréchet differentiability of convex functions, Acta Math. 121
(1968), 31–47.
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