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Abstract. We consider the separation problem for sets X that are inverse images of a given set S by a
linear mapping. Classical examples occur in integer programming, complementarity problems and other
optimization problems. One would like to generate valid inequalities that cut off some point not lying
in X, without reference to the linear mapping. Formulas for such inequalities can be obtained through
cut-generating functions. This paper presents a formal theory of minimal cut-generating functions and
maximal S-free sets. This theory relies on tools of convex analysis.
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1 Introduction

In this paper, we consider sets of the form

X = X(R,S) :=
{
x ∈ Rn+ : Rx ∈ S

}
, (1a)

where

{
R = [r1 . . . rn] is a real q × n matrix ,

S ⊂ Rq is a nonempty closed set with 0 /∈ S .
(1b)

In other words our set X is the intersection of a closed convex cone with a reverse image by a linear
mapping. This model is considered in [15], where it is called “multiple right-hand side choice linear
program”, in the special case where S is a finite set. Because 0 /∈ S, the closed convex hull of X does not
contain 0 (see Lemma 2.1 below); we are then interested in separating 0 from X: we want to generate
cuts, i.e. inequalities valid for X, which we write as

c>x > 1 , for all x ∈ X . (2)
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1.1 Motivating examples

Starting from a polyhedron
P :=

{
(x, y) ∈ Rn+ × Rm : Ax+ y = b

}
(3)

(nonnegativity of the y-variables can also be imposed), consider first two applications arising in mixed
integer programming that have been considered in the literature. Assume that b /∈ Zm.

Example 1.1 (An integer linear program). In a first instance, all variables must be integers: the set of
interest is P ∩ (Zn × Zm), i.e. the set of (x, y = b−Ax) such that x ∈ Zn+ and b−Ax ∈ Zm. This model
has the form (1) if we set

q = n+m, R =

[
I
−A

]
, S = Zn ×

(
Zm − {b}

)
. (4)

Since b /∈ Zm, the above S is a closed set not containing the origin; (4) is the model considered in [11].
The convex hull of P ∩ (Zn × Zm) is known as the corner polyhedron.

Except for the translation by the basic solution (x = 0, y = b) (a rather simple operation), S is quasi
instance-independent. This is actually a crucial feature; it determines the approach developed in this
paper, namely cut-generating functions to be developed below.

Example 1.2 (A mixed integer linear program). In a similar situation, the set of interest is P∩(Rn×Zm),
i.e. the set of (x, y = b−Ax) such that x ∈ Rn+ and b−Ax ∈ Zm. Then we are still in the same situation
with

q = m, R = −A , S = Zm − b ;

this is the model considered in [1] for m = 2, and in [7] for general m.

Model (1) occurs in other areas than integer programming and we give another example.

Example 1.3 (Complementarity problem). Still using P of (3), let

E ⊂ {1, 2, . . . ,m} × {1, 2, . . . ,m} and C := {y ∈ Rm+ : yiyj = 0 , (i, j) ∈ E} .

The set of interest is then P ∩ (Rn × C). It can be modeled by (1) where

q = m, R = −A , S = C − b ;

Cuts have been used for complementarity problems of this type, for example in [16].

We will retain from these examples the dissymetry between S (a very particular and highly structured
set) and R (an arbitrary matrix). Keeping this in mind, we will consider that (q, S) is given and fixed,
while (n,R) is instance-dependent data: our cutting problem can be viewed as parametrized by (n,R).

1.2 Introducing cut-generating functions

To generate cuts in the present situation, it would be convenient to have a mapping, taking instances
of (1) as input, and producing cuts as output. What we need for this is a function

Rq 3 r 7→ ρ(r) ∈ R

which, applied to the columns rj of a q × n matrix R (an arbitrary matrix, with an arbitrary number of
columns) will produce the n coefficients cj := ρ(rj) of a cut (2). Thus, we require from our ρ to satisfy

x ∈ X =⇒
n∑
j=1

ρ(rj)xj > 1 , (5)

for every instance X of (1). Such a ρ can then justifiably be called a cut-generating function (cgf).
The notation ρ refers to representation, which will appear in Definition 2.6 below. One of the most
well-known cut-generating functions in integer programming is the so-called Gomory function, used to
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generate Gomory’s mixed-integer cuts through a simple closed-form formula [10]. Because these cuts
can be generated quickly, they are a powerful tool in computations; indeed, they drastically speed up
integer-programming solvers [6].

So far, a cgf is a rather abstract object, as it lies in the (vast!) set of functions from Rq to R; but
the following observation allows a drastic reduction of this set.

Remark 1.4 (Dominating cuts). Consider in (2) a vector c′ with c′j 6 cj for j = 1, . . . , n; then c′>x 6 c>x
whenever x > 0. If c′ is a cut, it is tighter than c in the sense that it cuts a bigger portion of Rn+. We
can impose some “minimal” character to a cgf, in order to reach some “tightness” of the resulting cuts.

With this additional requirement, the decisive Theorem 2.3 below will show that a cgf can be
imposed to be convex positively homogeneous (and defined on the whole of Rq); positive homogeneity
means ρ(tr) = tρ(r) for all r ∈ Rq and t > 0. This is a fairly narrow class of functions indeed, which is
fundamental in convex analysis. Such functions are in correspondence with closed convex sets and in our
context, such a correspondence is based on the mapping ρ 7→ V defined by

V = V (ρ) :=
{
r ∈ Rq : ρ(r) 6 1

}
, (6)

which turns out to be a cornerstone: via Theorem 2.5 below, (6) establishes a correspondence between
the cgf’s and the so-called S-free sets. As a result, cut-generating functions can alternatively be studied
from a geometric point of view, involving sets V instead of functions ρ. This situation, common in convex
analysis, is often very fruitful. With regard to Remark 1.4, observe that V (ρ) increases when ρ decreases:
small ρ’s give large V ’s. However the converse is not true because the mapping in (6) is many-to-one and
therefore has no inverse. A first concern will therefore be to specify appropriate correspondences between
(cut-generating) functions and (S-free) sets.

1.3 Scope of the paper

The aim of the paper is to present a formal theory of minimal cut-generating functions and maximal
S-free sets, valid independently of the particular S. Such a theory would gather and synthetize a number
of papers dealing with the above problem for various special forms for S: [17, 1, 7, 9, 3, 4] and references
therein. For this, we use basic tools from convex analysis and geometry. Readers not familiar with
this field may use [14] (especially its Chap. C) for an elementary introduction, while [13, 18] are more
complete.

The paper is organized as follows.

– Section 2 states more accurately the concepts of cgf’s and S-free sets.

– Section 3 studies the mapping (6). We show that the pre-images of a given V (the representations
of V ) have a unique maximal element γV and a unique minimal element µV ; in view of Remark 1.4,
the latter then appears as the relevant inverse of ρ 7→ V (ρ).

– In Section 4, we study the correspondence V ↔ µV . We show that different concepts of minimality
come into play for ρ in Remark 1.4. Geometrically they correspond to different concepts of maximality
for V .

– We also show in Section 5 that these minimality concepts coincide in a number of cases.

– Finally we have a conclusion section, with some suggestions for future research.

2 Cut-generating functions: definitions and first results

We begin with making sure that our framework is consistent. We will use conv(X) [resp. conv(X)] to
denote the convex hull [resp. closed convex hull] of a set X.

Lemma 2.1. With X given as in (1), 0 /∈ conv(X).

Proof. Assume X 6= ∅, otherwise we have nothing to prove. Because 0 does not lie in the closed set S,
there is ε > 0 such that s ∈ S implies ‖s‖1 > ε; and by continuity of the mapping x 7→ Rx, there is η > 0
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such that ‖x‖1 > η for all x ∈ X. Because X ⊂ Rn+, this means

‖x‖1 =

n∑
j=1

|xj | =
n∑
j=1

xj > η , for all x ∈ X .

In other words, the hyperplane
∑
j xj > η separates 0 from X, hence from conv(X).

Remember that we are interested in functions ρ satisfying (5) for any (n,R) in (1), and that it is
desirable to reduce the class of all possible such functions. The following lemma, inspired from Claim 1
in the proof of [3, Lem. 23], is instrumental for this.

Lemma 2.2. Let ρ be a cgf. For all sets of K vectors rk ∈ Rq and nonnegative coefficients αk, the
following relation holds:

K∑
k=1

αkrk = 0 =⇒
K∑
k=1

αkρ(rk) > 0 .

Proof. Call e ∈ Rq the vector of all ones and α ∈ RK the vector of αk’s; take t > 0 and define the vectors
in RK+q

x :=

[
0
e

]
, d :=

[
α
0

]
, so that x+ td =

[
tα
e

]
∈ RK+q

+ .

Then pick s ∈ S; make an instance of (1) with n = K + q and R :=
[
r1 . . . rK | D(s)

]
, where the

q × q matrix D(s) is the diagonal built on s. Observing that

R(x+ td) = t
∑
k

αkrk +D(s)e = s ,

x+ td is feasible in the resulting instance of (1a): (5) writes

t

K∑
k=1

αkρ(rk) > 1− z ,

where z is a fixed number gathering the result of applying ρ to the columns of D(s). Letting t → +∞
proves the claim.

Now we introduce some notation. The domain and epigraph of a function ρ : Rq → R ∪ {+∞} are

dom ρ :=
{
r ∈ Rq : ρ(r) < +∞

}
and epi ρ :=

{
(r, z) ∈ Rq+1 : z > ρ(r)

}
.

If dom ρ is the whole of Rq, we say that ρ is finite-valued; a convex finite-valued function is continuous
on Rq. A function is said to be sublinear if it is convex and positively homogeneous; or if its epigraph is a
convex cone. The conical hull cone (epi ρ) of epi ρ is the set of nonnegative combinations of points (r, z) ∈
epi ρ:

r =

K∑
k=1

αkrk , z =

K∑
k=1

αkzk , with zk > ρ(rk) , αk > 0 , k = 1, . . . ,K ,

where K is an arbitrary integer. This conical hull is itself the epigraph of a sublinear function: the
“sublinear hull” of ρ, whose value at r is the smallest possible of the above z’s:

ρ̄(r) := inf
{ K∑
k=1

αkρ(rk) :

K∑
k=1

αkrk = r, αk > 0
}
. (7)

Theorem 2.3. If ρ is a cgf, then ρ̄ of (7) is nowhere −∞ and is again a cgf.
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Proof. Express every r ∈ Rq as a nonnegative combination:
∑
k α

krk − r = 0, hence (Lemma 2.2)∑K
k=1 α

kρ(rk) + ρ(−r) > 0 and the sublinear hull is bounded from below: ρ̄(r) > −ρ(−r) > −∞.
Then take an instance R = [rj ]

n
j=1 of (1b). If it produces X = ∅ in (1a), there is nothing to prove.

Otherwise fix x̄ ∈ X.
For each j, take a positive combination rj =

∑
k α

k
j r
k
j . Then

s̄ := Rx̄ =

n∑
j=1

x̄jrj =

n∑
j=1

x̄j

K∑
k=1

αkj r
k
j = R+x+ ,

where x+ ∈ RnK denotes the vector with coordinates αkj x̄j > 0 and R+ the matrix whose nK columns

are rkj . Because R+ is a possible instance of (1b) and R+x+ = s̄ ∈ S, the cgf ρ separates x+ from 0:

1 6
∑
k,j

ρ(rkj )
(
αkj x̄j) =

n∑
j=1

( K∑
k=1

αkj ρ(rkj )
)
x̄j . (8)

Apply the definition of an infimum: for each ε > 0 we can choose our decompositions (rkj , α
k
j ) so that

K∑
k=1

αkj ρ(rkj ) 6 ρ̄(rj) + ε , for j = 1, . . . , n

which yields with (8)

1 6
n∑
j=1

(
ρ̄(rj) + ε

)
x̄j =

n∑
j=1

ρ̄(rj)x̄j + ε

n∑
j=1

x̄j .

Because ε is arbitrarily small – while x̄ is fixed – we see that ρ̄ does satisfy (5).

In view of Remark 1.4, Theorem 2.3 allows us to restrict our attention to cgf’s that are sublinear;
and they are finite-valued by definition. By continuity and because ρ(0) = 0, V (ρ) in (6) is a closed
convex neighborhood of 0 in Rq. Besides, its interior and boundary are respectively

int(V (ρ)) = {r ∈ V : ρ(r) < 1} , bd(V (ρ)) = {r ∈ V : ρ(r) = 1} . (9)

This comes from the Slater property ρ(0) = 0 (see, e.g., [14, Prop. D.1.3.3]) and can be checked directly:

– by continuity, ρ(r̄) < 1 implies ρ(r) 6 1 for r close to r̄;

– by positive homogeneity, ρ(r̄) = 1 implies ρ(r) = 1 + ε for r = (1 + ε)r̄.

The relevant such neighborhoods for our purpose are the following:

Definition 2.4 (S-free set). Given a closed set S ⊂ Rq not containing the origin, a closed convex
neighborhood V of 0 ∈ Rq is called S-free if its interior contains no point in S: int(V ) ∩ S = ∅.

Let us make clear the importance of this definition.

Theorem 2.5. Let the sublinear function ρ : Rq → R and the closed convex neighborhood V (of 0 ∈ Rq)
satisfy (6). Then ρ is a cgf for (1) if and only if V is S-free.

Proof. Let V be S-free; in view of (9), ρ(r) > 1 for all r ∈ S. In particular, take a q×n matrix R, x ∈ X
of (1a) and set r := Rx ∈ S. Then, using sublinearity,

1 6 ρ(Rx) = ρ
( n∑
j=1

xjrj

)
6

n∑
j=1

xjρ(rj) ;

ρ is a cgf.
Conversely, suppose V is not S-free: again from (9), there is some r1 ∈ S such that ρ(r1) < 1. Take

in (1b) the instance (n,R) = (1, [r1]). Then 1 ∈ X (r1 ∈ S), so c1 := ρ(r1) < 1 cannot be a cut.
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This allows a new definition of cgf’s, much more handy than the original one:

Definition 2.6 (cgf as representation). Let V ⊂ Rq be a closed convex neighborhood of the origin. A
representation of V is a finite-valued sublinear function ρ such that

V =
{
r ∈ Rq : ρ(r) 6 1

}
.

We will say that ρ represents V .
A sublinear cut-generating function for (1) is a representation of an S-free set.

A finite-valued sublinear function ρ represents a unique V = V (ρ), well-defined by (6). One easily
checks monotonicity of the mapping V (·):

ρ 6 ρ′ =⇒ V (ρ) ⊃ V (ρ′) . (10)

By contrast, a given neighborhood V may have several representations, and we are interested in the small
ones; this is the subject of the next section.

3 Largest and smallest representations

In this section, we study the representation operation introduced in Definition 2.6 and its geometric
counterpart. This indeed puts [5] in perspective and has its own interest in convex analysis. In fact,
observing that V in (6) has no reason to be bounded, it somehow extends gauge theory to unbounded
sets.

3.1 Some elementary convex analysis

First recall some basic theory (see, e.g., [14, Chap. C]), which will be central in our development. The
support function of a set G ⊂ Rq is

σG(r) := sup
d∈G

d>r , (11)

which may assume the value +∞ if G is unbounded. It is easily seen to be sublinear, to grow when
G grows, but to remain unchanged if G is replaced by its closed convex hull: σG = σconv(G). Besides,
σG is finite-valued if and only if G is bounded. Conversely, every [finite-valued] sublinear function ρ is
the support function of a [bounded] closed convex set, unambiguously defined by

G = Gρ :=
{
d ∈ Rn : d>r 6 ρ(r) for all r ∈ Rq

}
;

we then say that ρ supports Gρ, which is the subdifferential ∂ρ(0) of ρ at 0. This defines a one-to-one
mapping between [finite-valued] sublinear functions and [bounded] closed convex sets.

Besides, the polar of G

G◦ :=
{
r ∈ Rq : d>r 6 1 for all d ∈ G

}
= {r ∈ Rq : σG(r) 6 1} (12)

is also a closed convex set (being an intersection of half-spaces, indexed by G). This G◦ is a neighborhood
of the origin when σG is finite-valued (i.e. whenG is bounded). We see from Definition 2.6 that the support
function of G represents its polar G◦. Given some V ⊂ Rn, a set G such that G◦ = V can be called a
prepolar of V , i.e. a set G such that σG represents V in the sense of Definition 2.6.

From now on in this section, we are given a subset V of Rq, which is a closed convex neighborhood
of the origin. Because 0 ∈ intV , the definition (11) of a support function shows that σV is positive
on Rq\{0}; even more: for some ε > 0, V contains the ball B(ε) centered at 0 of radius ε, hence

ε‖d‖ = σB(ε)(d) 6 σV (d) for all d ∈ Rq . (13)

Then V ◦ is bounded since the relation σV (d) 6 1 implies ‖d‖ 6 1/ε.
A very relevant object for our purpose is the gauge

Rq 3 r 7→ γV (r) := inf {λ > 0 : r ∈ λV } (14)

of our neighborhood V . In fact, [14, Thm. C.1.2.5 and Prop. C.3.2.4] show that γV
– appears as a representation of V

– is the support function of its polar: V ◦ =
{
d : σV (d) 6 1

}
= ∂γV (0).
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Now, as already mentioned, V may have several representations, which make up just as many prepo-
lars. Because (V ◦)◦ = V , the standard polar V ◦ is itself a prepolar – which is somewhat confusing – and
turns out to be the largest one; or equivalently γV turns out to be the largest representation of V . These
facts will be established in Corollary 3.2 below. The main result of this section states that V has also a
smallest prepolar, or equivalently a smallest representation; keeping Remark 1.4 in mind, this is exactly
what we want. This result is actually [5, Thm. 1]; here we use elementary results of convex analysis, and
we insist more on the geometric aspect.

3.2 Largest representation

Introduce the recession cone V∞ of V . Because 0 ∈ V , it can be defined as

V∞ = {d ∈ Rq : td ∈ V for all t > 0} =
⋂
λ>0

λV ,

and the second relation shows that V∞ is closed. We also see that

V∞ ⊂ V . (15)

One then easily sees from (14) that γV (r) = 0 if r ∈ V∞. Yet, for any other representation ρ of V , (6) just
imposes ρ(r) 6 0 at this r and we may a priori have ρ(r) < 0: the possible representations of V may
differ on V∞. We make this more precise.

Lemma 3.1 (Representations and recession cone). For all representations ρ of the closed convex neigh-
borhood V ,

ρ(r) 6 0 ⇐⇒ r ∈ V∞ and ρ(r) < 0 =⇒ r ∈ int (V∞) .

Besides, all representations coincide on the complement of int(V∞).

Proof. By positive homogeneity, ρ(r) 6 0 implies ρ(tr) 6 0 < 1 (hence tr ∈ V ) for all t > 0; this implies
r ∈ V∞. Conversely, ρ(r) > 0 implies ρ(tr) > 1 for t large enough: using 0 ∈ V again, r cannot lie in V∞.

To prove the second implication, invoke continuity of ρ: if ρ(r) < 0, ρ is still negative in a neighborhood
of r, this neighborhood is contained in V∞.

Besides, take a half-line emanating from 0 but not contained in V∞; it certainly meets the boundary
of V , at a point r̄ which is unique (see, e.g., [14, Rem. A.2.1.7]). By (9), every representation ρ satisfies
ρ(r̄) = 1; and by positive homogeneity, the value of this representation is determined all along the half-
line. In other words, all possible representations of V coincide on the complement W of V∞; and by
continuity, they coincide also on the closure of W , which is the complement of int(V∞).

r1

ρ = γV

0

V

V∞

ρ 6 γv ≡ 0

r2

Figure 1: All representations coincide except in int (V∞)

Figure 1 illustrates the difference between the recession cone (where the gauge is “maximal”) and
the rest of the space (where it is the representation). Altogether, the gauge appears as the largest
representation:

Corollary 3.2 (Maximality of the gauge). All representations ρ of V satisfy ρ 6 γV , with equality on
the complement of int(V∞).

Geometrically, all prepolars G are contained in the polar of V :

G◦ = V =⇒ G ⊂ V ◦ .

In particular, V has a unique representation ρ = γV (and a unique prepolar V ◦) whenever int(V∞) = ∅.
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Proof. Just apply Lemma 3.1, observing from (14) that the gauge is nonnegative.
Geometrically, the inequality between support functions becomes an inclusion: the set G supported

by ρ is included in the set V ◦ supported by γV (see, e.g., [14, Thm. C.3.3.1]).

3.3 Smallest representation

The previous subsection dealt with polarity in the usual sense, viewing the gauge as a special represen-
tation. However, we are rather interested in small representations. Geometrically, we are interested in
small prepolars, and the following definitions are indeed relevant:{

Ṽ ◦ :=
{
d ∈ V ◦ : d>r = σV (d) = 1 for some r ∈ V } ,

V̂ ◦ :=
{
d ∈ V ◦ : σV (d) = 1

}
.

(16)

Because of (9), V̂ ◦ 6= ∅ if V has a boundary, i.e. if V 6= Rq. Obviously, Ṽ ◦ ⊂ V̂ ◦. Besides, (13) implies
that the two sets are bounded. They turn out to have the same closed convex hull, which is our required
smallest prepolar.

Lemma 3.3. The sets in (16) satisfy Ṽ ◦ ⊂ V̂ ◦ ⊂ cl
(
Ṽ ◦
)
. It follows that V̂ ◦ and Ṽ ◦ have the same

closed convex hull. In particular, Ṽ ◦ 6= ∅ whenever V̂ ◦ 6= ∅.

Proof. The first inclusion is clear. To prove the second inclusion, recall two properties:

– the domain dom ∂σV of a subdifferential is dense in the domain domσV of the function itself: see, e.g.,
[14, Thm. E.1.4.2];

– the subdifferential ∂σV (d) is the face of V exposed by d: see, e.g., [14, Prop. C.3.1.4].

Thus, d /∈ Ṽ ◦ implies ∂σV (d) = ∅; in other words, Ṽ ◦ ⊃ dom ∂σV . Taking closures,

cl Ṽ ◦ ⊃ cl (dom ∂σV ) ⊃ domσV ;

the required inclusion follows, since the last set obviously contains V̂ ◦.
It follows from the second inclusion that

conv
(
V̂ ◦
)
⊂ conv

(
cl
(
Ṽ ◦
))
.

On the other hand, the first inclusion implies that conv
(
V̂ ◦
)

(a closed set) contains the closure of Ṽ ◦:

cl
(
Ṽ ◦
)
⊂ conv

(
V̂ ◦
)
. This inclusion remains valid by taking the closed convex hulls:

conv
(

cl
(
Ṽ ◦
))
⊂ conv

(
V̂ ◦
)

;

the two sets coincide. The last statement is clear since the closure of the empty set is the empty set.

For later use, we illustrate this construction with a simple example.

A

C

B

r1

r2

V

Figure 2: Constructing Ṽ ◦ or V̂ ◦
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Example 3.4. We denote by (r1, r2) the coordinates of a point in R2. Take for V the polyhedron of
Figure 2, defined by the three inequalities

r1 6 1 , r2 6 1 , r2 6 2 + r1 .

Remembering that extreme points of V ◦ correspond to facets of V , we see that V ◦ has the three extreme
points A, B, C defined by the equation d>r = 1, for r respectively on the three lines making up the
boundary of V . We obtain A = (1, 0), B = (0, 1), C = 1

2 (−1, 1).

In a word, Ṽ ◦ and V̂ ◦ are the same set, namely the union of the two segments [A,B] and [B,C]. To
obtain V ◦, convexify them with the fourth point 0; if V had a fourth constraint, say r2 > −1, then this
fourth point would be moved down to D = (0,−1) – and enter Ṽ ◦ and V̂ ◦.

The status of the boundary of the two sets in (16) is ambiguous. The left part of Figure 3 uses the

same V as in Figure 1; d1 lies in V̂ ◦ but not in Ṽ ◦; hence Ṽ ◦ need not be closed. By contrast, d2 lies
in both: on this example, V̂ ◦ is closed; but this is not true in general, the right part of Figure 3 is a
classical counter-example. There, V ⊂ R2 is the parabolic set defined by the constraint r2 6 1− 1

2 (r1)2.
A direction d = (d1, d2) with d2 > 0 exposes the point r(d) which goes unbounded when d2 ↓ 0. By direct

calculations, V̂ ◦ is defined by the equation

σV (d1, d2) = d2 +
(d1)2

2d2
= 1 .

This is a curve passing through the origin; yet 0 cannot lie in V̂ ◦, since σV (0) = 0 6= 1.

0

V

V∞

Ṽ ◦

d1

d2

r2

d

V

r1r(d)

Figure 3: Activity in V ◦; trouble appears if the unbounded V has no asymptote

The closed convex hull revealed by Lemma 3.3 deserves a notation, as well as its support function:
we set

V • := conv
(
Ṽ ◦
)

= conv
(
V̂ ◦
)

and µV := σV • = σṼ ◦ = σV̂ ◦ . (17)

For example in Figure 2, V • is the triangle conv{A,B,C}. In fact, the next result shows that µV is the
small representation we are looking for. From now on, we assume V 6= Rq, otherwise V • = ∅, µV ≡ −∞;
a degenerate situation, which lacks interest anyway.

Proposition 3.5 (Smallest representation). Any ρ representing V 6= Rq satisfies ρ > µV .
Geometrically, V • is the smallest closed convex set whose support function represents V .

Proof. Our assumption implies that neither V̂ ◦ nor Ṽ ◦ is empty (recall Lemma 3.3). Then take an

arbitrary d in Ṽ ◦. We have to show that d>r 6 ρ(r) for all r ∈ Rq; this inequality will be transmitted to
the supremum over d, which is µV (r).

Case 1. First let r be such that ρ(r) > 0. Then r̄ := r/ρ(r) lies in V , so that d>r̄ 6 σV (d) = 1. In other

words, d>r̄ = d>r
ρ(r) 6 1, which is the required inequality.

Case 2. Let now r be such that ρ(r) 6 0, so that r ∈ V∞ by Lemma 3.1. Because d ∈ Ṽ ◦, we can take
rd ∈ V such that d>rd = 1. Being exposed, rd lies on the boundary of V : by (9), ρ(rd) = 1.

By definition of the recession cone, rd + tr ∈ V for all t > 0 and, by continuity of ρ, ρ(rd + tr) > 0 for
t small enough. Apply Case 1:

d>rd + td>r = d>(rd + tr) 6 ρ(rd + tr) 6 ρ(rd) + tρ(r) ,

9



where we have used sublinearity. This proves the required inequality since the first term is 1 + td>r and
the last one is 1 + tρ(r).

The geometric counterpart is proved just as in Corollary 3.2.

Thus, V does have a smallest representation, which is the support function of V •.

3.4 The set of prepolars

First of all, it is interesting to link the two extreme representations/prepolars introduced so far. The
intuition suggested by Figure 2 or 3 is confirmed by the following result.

Proposition 3.6. Appending 0 to V • gives the standard polar:

γV = max
{
µV , 0

}
i.e. V ◦ = conv

(
V • ∪ {0}

)
= [0, 1]V • .

Proof. For r ∈ V∞, γV (r) = 0, while µV (r) 6 0 (Theorem 3.5). For r /∈ V∞, Lemma 3.1 gives γV (r) =
µV (r) > 0 because γV and µV are two particular representations.

Altogether, the first equality holds. Its geometric counterpart is [14, Thm. C.3.3.2]; and because V •

is convex compact, its closed convex hull with 0 is the sets of αd+ (1− α)0 for α ∈ [0, 1].

Let us summarize our results:

Theorem 3.7. The representations of V (a closed convex neighborhood of the origin) are the finite-valued
sublinear functions ρ satisfying

σV • = µV 6 ρ 6 γV = σV ◦ . (18)

Geometrically, the prepolars of V , i.e. the sets G whose support function represents V , are the sets
sandwiched between the two extreme prepolars of V :

G◦ = V ⇐⇒ V • ⊂ conv(G) ⊂ V ◦ .

Proof. In view of Corollary 3.2 and Proposition 3.5, we just have to prove that a ρ satisfying (18) does
represent V . Indeed, if r ∈ V then ρ(r) 6 γV (r) 6 1; if r /∈ V , then 1 < µV (r) 6 ρ(r). The geometric
counterpart is again standard calculus with support functions.

We end this section with a deeper study of prepolars, which will be useful in the sequel. The next
result introduces the polar cone (V∞)◦. When G is a cone, the righthand side “1” in (12) can be replaced
by “0”:

(V∞)◦ = {r ∈ Rq : σV∞(r) 6 0} . (19)

Instead of (V∞)◦, we use the notation V ◦∞ for simplicity – although (V∞)◦ differs from (V ◦)∞, which
is {0} since V ◦ is bounded.

Lemma 3.8 (Additional properties of prepolars). Use the notation (16), (17).

(i) V ◦∞ is the closure of domσV ;

(ii) R+V̂
◦ = R+V

• = R+V
◦ = domσV .

Proof. First of all, let d /∈ V ◦∞: there is r ∈ V∞ (R+r ∈ V ) and d>r > 0; then d>(tr)→ +∞ for t→ +∞
and σV (d) cannot be finite, i.e. d /∈ domσV . Because V ◦∞ is closed, domσV ⊂ cl (domσV ) ⊂ V ◦∞.

To prove the converse inclusion, take r /∈ (domσV )◦: there is d such that σV (d) < +∞ and d>r > 0.
Then d>(tr) → +∞ when t → +∞; if r were in V∞, then tr would lie in V and σV (d) would be +∞,
a contradiction. Thus we have proved V∞ ⊂ (domσV )◦. Taking polars and knowing that domσV is a
cone, V ◦∞ ⊃ (domσV )◦◦ = cl (domσV ) (see [14, Prop. A.4.2.6]). This proves (i).

To prove (ii), observe first that V̂ ◦ ⊂ V • ⊂ V ◦ ⊂ domσV ; and because domσV is a cone,

R+V̂
◦ ⊂ R+V

• ⊂ R+V
◦ ⊂ domσV . (20)

On the other hand, take 0 6= d ∈ domσV , so that σV (d) > 0 by (13) and 1
σV (d)d ∈ V̂

◦: d ∈ R+V̂
◦. Since

0 also lies in R+V̂
◦, we do have domσV ⊂ R+V̂

◦; (20) is actually a chain of equalities. To complete the
proof, observe from Proposition 3.6 that R+V

◦ = R+V
•.

10



The situation illustrated by the right part of Figure 3 is really pathological; useful properties come
when it does not occur.

Corollary 3.9 (Safe prepolars). If 0 /∈ V •, then

R+V̂
◦ = R+V

• = R+V
◦ = domσV = V ◦∞ (21)

and intV∞ 6= ∅ (the polar V ◦∞ is a so-called pointed cone).

Proof. When 0 /∈ V •, R+V
• is closed ([14, Prop. A.1.4.7]). Then apply Lemma 3.8: by (ii) domσV is

closed and (21) follows from (i).
Besides, separate 0 from V •: there is some r such that σV •(r) < 0. By continuity of the finite-valued

convex function σV • , this inequality is still valid in a neighborhood of r: σV • 6 0 over some nonzero
ball B around r. By Lemma 3.8(ii),

σV ◦∞(d) = σR+V •(d) = sup
t>0

sup
d∈V •

td>r = sup
t>0

tσV •(d) ,

so that σV ◦∞ enjoys the same property: by (19), B is contained in (V ◦∞)◦. Proposition A.4.2.6 of [14]
finishes the proof.

Let us put this section in perspective. The traditional gauge theory defines via (14), (12) the polarity
correspondence V ↔ V ◦ for compact convex neighborhoods of the origin. We generalize it to unbounded
neighborhoods, whose standard gauge is replaced via Definition 2.6 by their family of representations.
Each representation ρ, which may assume negative values, gives birth to ∂ρ(0) – which we call a prepolar
of V . Theorem 3.7 establishes the existence of a largest element (the usual polar V ◦) and of a smallest
element (V •) in the family of (closed convex) prepolars of V .

4 Minimal cgf’s, maximal S-free sets

4.1 Minimality

In our quest for small cgf’s (remember Remark 1.4), the following definition is natural.

Definition 4.1 (Minimality). A cgf ρ is called minimal if the only possible cgf ρ′ 6 ρ is ρ itself.

Knowing that a cgf ρ represents V (ρ) and that µV (ρ) 6 ρ represents the same set, a minimal cgf is
certainly a smallest representation:

ρ is a minimal cgf =⇒ ρ = µV (ρ) = σV (ρ)• . (22)

In addition, V (ρ) must of course be a special S-free set when ρ is minimal. Take for example S = {1} ⊂ R,
V = [−1,+1]; ρ(r) := |r| is the smallest (because unique) representation of V but is not minimal:
ρ′(r) := max {0, r} is also a cgf, representing V ′ =] − ∞,+1]. From (10), a smaller ρ describes a
larger V ; so Definition 4.1 has its geometrical counterpart:

Definition 4.2 (Maximality). An S-free set V of Definition 2.4 is called maximal if the only possible
S-free set V ′ ⊃ V is V itself.

We first make sure that maximal S-free sets do exist.

Theorem 4.3. Every S-free set is contained in a maximal S-free set.

Proof. Let V be an S-free set. In the partially ordered family (F ,∪) of all S-free sets containing V , let
{Wi}i∈I be a totally ordered subfamily (a chain) and define W := ∪i∈IWi. Clearly, W is a neighborhood
of the origin; its convexity is a known property (easily established), let us show that its closure is S-free.

Remember from [14, Thm. C.3.3.2(iii)] that the support function of an union is the (closure of the)
supremum of the support functions:

σint (W ) = σW = cl
(

sup
i∈I

σWi

)
= cl

(
sup
i∈I

σint (Wi)

)
= σ∪i int (Wi) .
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Having the same support function, the two open convex sets int (W ) and ∪i int (Wi) coincide: r ∈ int (W )
means r ∈ int (Wi) for some i; because Wi is S-free, r /∈ S and our claim is proved. Thus, the chain {Wi}
has an upper bound in F ; in view of Zorn’s lemma, F has a maximal element.

The maximal S-free sets can be explicitly described for some special S’s: Zq [17], the intersection
of Zq with an affine subspace [3], or with a rational polyhedron [4].

However, the “duality” between minimal cgf’s and maximal S-free sets is deceiving, as the two
definitions do not match: the set represented by a minimal cgf need not be maximal. Here is an
example.

Example 4.4. When ρ is linear, the property introduced in Definition 4.1 holds vacuously: no sublinear
function can properly lie below a linear function. Thus, a linear cgf ρ is always minimal; yet, a linear ρ
represents a neighborhood V (ρ) (a half-space) which is S-free but has not reason to be maximal. See
Figure 4: with n = 1, the set V =] −∞, 1] (represented by ρ(x) = x) is {2}-free but is obviously not
maximal.

0

V

S = {2}1

Figure 4: A linear cgf is always maximal

This example is rather naive but Example 4.8 below will reveal a more serious deficiency. So a subtlety
is necessary: indeed the smallest representation of a maximal S-free set V enjoys a stronger property
than minimality.

4.2 Strong minimality

Let ρ be a cgf, which represents via (6) the set V = V (ρ). The largest representation γV (ρ) somehow
depends on ρ and here comes the correct substitute to Definition 4.1.

Definition 4.5 (Strongly minimal cgf). A cgf ρ is called strongly minimal if every cgf ρ′ 6 γV (ρ)

satisfies ρ′ > ρ.

Needless to say, strongly minimal cgf’s are minimal. Example 4.8 below will complement Example 4.4,
showing that the two definitions do differ. At any rate, strong minimality does correspond to maximality.

Theorem 4.6 (Strongly minimal ⇔ maximal). An S-free set V is maximal if and only if its smallest
representation µV of (17) is a strongly minimal cgf.

Proof. Consider first a maximal V . Every cgf ρ′ satisfying ρ′ 6 γV represents an S-free set V ′, which
contains V – see (6) – so that V ′ = V by maximality and ρ′ represents V as well, hence ρ′ > µV by
Theorem 3.5. Thus, µV is strongly minimal.

Assume now that ρ is a strongly minimal cgf, so in particular ρ = µV for some S-free V . Let V ′ ⊃ V
be S-free; there holds (V ′)◦ ⊂ V ◦, i.e.

γV ′ = σ(V ′)◦ 6 σV ◦ = γV .

Now ρ′ := γV ′ represents the S-free set V ′ and is therefore a cgf; in view of Definition 4.5, ρ′ > ρ.
Altogether, ρ′ is a sublinear function satisfying (18): it represents not only V ′ but also V ; hence V ′ = V ,
i.e. V is maximal.

In §3 we have systematically developed the geometric counterpart of representations; this exercise can
be continued here. In fact, the concept of minimality involves two properties from a sublinear function:

– it must be the smallest representation of some neighborhood V – remember (22),

– this neighborhood must enjoy some maximality property.

12



In view of the first property, a cgf can be imposed to be not only sublinear but also to support a set that
is a smallest prepolar. Then Definition 4.1 has a geometric counterpart: minimality of ρ = µV = σV •

means
G′ ⊂ V • and (G′)◦ is S-free =⇒ G′ = V •, i.e. (G′)◦ = V

[ρ′ = σG′ 6 ρ] [ρ′ is a cgf] [ρ′ = ρ]
.

Likewise for Definition 4.5: strong minimality of ρ = γV = σV ◦ means

G′ ⊂ V ◦ and (G′)◦ is S-free =⇒ G′ ⊃ V •, i.e. (G′)◦ ⊂ V
[ρ′ = σG′ 6 γV ] [ρ′ is a cgf] [ρ′ > ρ]

.

These observations allow some more insight into the (·)• operation:

Proposition 4.7. Let ρ = µV = σV • be a minimal cgf. If an S-free neighborhood W satisfies W • ⊂ V •,
then W = V .

Proof. Because W is S-free, its smallest representation ρ′ := µW = σW• is a cgf; and from monotonicity
of the support operation, ρ′ 6 ρ. Then minimality of ρ implies ρ′ = ρ, i.e. W • = V •, an equality
transmitted to the polars: W = (W •)◦ = (V •)◦ = V .

Thus, the trouble necessitating strong minimality lies in (10). Even though the reverse implication
holds when ρ = γV , it does not hold for ρ = µV . Geometrically, V ⊂ V ′ does imply V ◦ ⊃ (V ′)◦ but does
not imply V • ⊃ (V ′)•. The mapping V 7→ V • is not monotonic, a phenomenon linked to the presence
of V∞. The following example helps for a better understanding.

Example 4.8. In Example 3.4, take for S the union of the three lines with respective equations

r1 = 1 , r2 = 1 , r2 = 2 + r1 ,

so that V is clearly maximal S-free.

V •t
At

W •

Vt rA

rC

B

C
At

B

C

Figure 5: The mapping V 7→ V • is not monotonic

Now shrink V to Vt (left part of Figure 5) by moving its right vertical boundary to r1 6 1− t. Then
A is moved to At =

(
1

1−t , 0
)
; there is no inclusion between the new V •t = conv{At, B,C} and the original

V • = conv{A,B,C}; this is the key to our example.
Let us show that µVt

is minimal, even though Vt is not maximal. Take for this a cgf ρ 6 µVt
, which

represents an S-free set W ; by (10), W ⊃ Vt. We therefore have

σW• = µW 6 ρ 6 µVt
= σV •t , i.e., W • ⊂ V •t

and we proceed to show that equality does hold, i.e. the three extreme points of V •t do lie in W •.

– If At /∈W •, the right part of Figure 5 shows that W • is included in the open upper half-space. Knowing
that

W =
(
W •
)◦

=
{
r : d>r 6 1 for all d ∈W •

}
,

this implies that W∞ has a vector of the form rA = (ε,−1) (ε > 0); W cannot be S-free.
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– If C /∈W •, there is rC ∈ R2 such that C>rC > σW•(rC) = µW (rC) (we denote also by C the 2-vector
representing C). For example rC = (−2, 0) ∈ bd (V ) (see the right part of Figure 5), so that

C>rC = 1 > σW•(−2, 0) = µW (−2, 0) .

By continuity, µW (−2− ε, 0) 6 1 for ε > 0 small enough. Because µW represents W , this implies that
(−2− ε, 0) ∈W ; W (which contains Vt) is not S-free.

– By the same token, we prove that B ∈W • (the separator rB = (0, 1) ∈ bd (V ) does the job).

We have therefore proved that W • = V •t , i.e. µW = µVt , i.e. µVt is minimal.

4.3 Asymptotic maximality

Then comes a natural question: how maximal are the S-free sets represented by minimal cgf’s? For
this, we introduce one more concept:

Definition 4.9. An S-free neighborhood V is called asymptotically maximal if every S-free set V ′ ⊃ V
satisfies V ′∞ = V∞.

It allows a partial answer to the question.

Theorem 4.10 (Minimal⇒ asymptotically maximal). The S-free neighborhood represented by a minimal
cgf is asymptotically maximal.

Proof. Let µV be a minimal cgf and take an S-free neighborhood V ′ ⊃ V . Introduce the set G :=
V • ∩

(
V ′∞
)◦

. Inclusions translate to inequalities between support functions:

σG 6 σV • = µV (23)

and we proceed to prove that this is actually an equality. Let us compute the set W := G◦ represented
by σG. The support function of an intersection is obtained via an inf-convolution (formula (3.3.1) in [14,
Chap. C)] for example): σG(·) is the closure of the function

r 7→ inf
{
σV •(r1) + σ(V ′∞)◦(r2) : r1 + r2 = r

}
.

In this formula, σV • = µV and the support function of the closed convex cone
(
V ′∞
)◦

is the indicator of
its polar V ′∞: the above function is

r 7→ inf
{
µV (r1) : r1 + r2 = r, r2 ∈ V ′∞

}
.

Now use (9): because σG represents W , to say that r ∈ int (W ) is to say that the above infimum is
strictly smaller than 1, i.e. that there are r1, r2 such that

r1 + r2 = r, r2 ∈ V ′∞, µV (r1) < 1 i.e. r1 + r2 = r, r2 ∈ V ′∞, r1 ∈ intV .

In a word:
int (W ) = V ′∞ + int (V ) ⊃ int (V ) 3 0 ,

where we have used the property 0 ∈ V ′∞. Remembering the inclusion V ⊂ V ′ and the definition of a
recession cone, we also have

int (W ) = V ′∞ + int (V ) ⊂ V ′∞ + int (V ′) ⊂ V ′∞ + V ′ ⊂ V ′ .

Altogether,
0 ∈ int (W ) ⊂ int (V ′) .

As a result, W (= G◦) is an S-free closed convex neighborhood of the origin: its representation σG is a
cgf and minimality of µV = σV • implies with (23) that σG = σV • .

Because V • and G = V • ∩
(
V ′∞
)◦

are both closed convex, this just means G = V •, i.e.
(
V ′∞
)◦ ⊃ V •.

By polarity, V ′∞ ⊂
(
V •
)◦

= V (invoke Theorem 3.7). The cone V ′∞, contained in the neighborhood V ,
is also contained in its recession cone: V ′∞ ⊂ V∞. Since the converse inclusion is clear from V ′ ⊃ V , we
have proved V ′∞ = V∞: V is asymptotically maximal.
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5 Favourable cases

Despite Example 4.8, a number of papers have established the equivalence between maximal S-free sets
and minimal cgf’s, for various forms of S. Accordingly, we investigate in this section the question: when
does minimality imply strong minimality? So we consider an S-free set V , whose smallest representation
µV = σV • is minimal; making use of Theorem 4.6, we want to exhibit conditions under which V is
maximal. Our result is the following:

Theorem 5.1. Suppose 0 ∈ Ŝ := conv(S). A minimal µV is strongly minimal whenever one of the
following two properties holds:

(i) V∞ ∩ Ŝ∞ = {0} (in particular S bounded),

(ii) V∞ ∩ Ŝ∞ = L ∩ Ŝ∞ and Ŝ = G+ Ŝ∞ with G bounded; here L is the lineality space of V .

This theorem generalizes several earlier results. The special case where S is a finite set of points
in Zq−b was first considered by Johnson [15] and more recently by Dey and Wolsey [9]. The case S = Zn
was considered in [7] and intersection of Zn with an affine space in [3]. Case (ii) was proven in [9, 4] in
the special case where S = P ∩(Zq−b) for some rational polyhedron P ; then (ii) holds for all maximal V .

The proof of Theorem 5.1, rather involved, is based on Theorem 4.10. Remembering that the whole
issue lies in unboundedness of V , we will construct a sequence of neighborhoods V k such that V k∞ ) V∞
(hence V k is not S-free), and containing an unbounded sequence {rk} ⊂ int (V k) ∩ S. Then we use this
sequence to give conditions under which V is maximal.

For a reason that will appear in (30) below, we may assume 0 /∈ V •. To construct V k, we take an
extreme ray R+dV of V ◦∞. By (21), its intersection with V • is a nonempty segment [dV , tV dV ], with
1 6 tV < +∞. Given a positive integer k, we construct an open neighborhood of [dV , tV dV ]:

Nk := [dV , tV dV ] +B
(

0,
1

k

)
=

⋃
16t6tV

B
(
tdV ,

1

k

)
, (24)

where B(d, δ) is the open ball of center d and radius δ. We deprive V • from Nk, thus obtaining a set C,
closed hence compact; its convex hull

Gk := convC , with C := V •\Nk =
{
d ∈ V • : ‖d− tdV ‖ >

1

k
for all t ∈ [1, tV ]

}
is convex compact. Note for future use that the distance from every d ∈ [dV , tV dV ] to C does not
exceed 1/k; and the same holds for Gk ⊃ C. Formally:

∀d̄ ∈ [dV , tV dV ] , ∃dk ∈ Gk such that ‖dk − d̄‖ 6
1

k
. (25)

Viewing Gk as a prepolar, we set
V k := (Gk)◦ .

Of course, V • ⊃ Gk+1 ⊃ Gk and V ⊂ V k+1 ⊂ V k. The closed convex neighborhood V k enjoys all of
the properties listed in §3, in particular those coming from 0 /∈ Gk. Figure 6 illustrates our construction,
motivated by the following result.

V •

Nk

R+G
k

dV

Figure 6: Chopping off V • near an extreme ray

15



Lemma 5.2 (Enlarging V∞). Assume 0 /∈ V •; let R+dV be an extreme ray of V ◦∞ and assume that V ◦∞ is
not reduced to R+dV . Given an integer k > 0, construct Nk, Gk, V k as above. Then Gk 6= ∅ for k large
enough (say k > k0) and

(i) V∞ ( V k∞ for k > k0 (V∞ is properly contained in V k∞),

(ii) ∩k>k0V k = V .

Proof. If Gk were empty for all k, we would have V • ⊂ Nk for all k, hence V • would reduce to [dV , tV dV ].
In view of (21), this would imply R+dV = V ◦∞, which our assumption rules out.

Every d ∈ Gk is a convex combination
∑
i αidi with each di in V •\Nk ⊂ V ◦∞. None of these di’s can

lie in [dV , tV dV ] ⊂ Nk, and none of their convex combinations either because of extremality of R+dV .
We conclude that

Gk ∩ [dV , tV dV ] = ∅ . (26)

Now, we see from Theorem 3.7 that

R+(V k)• ⊂ R+G
k ⊂ R+(V k)◦ ;

but from Proposition 3.6, this is actually a chain of equalities:

R+(V k)• = R+G
k . (27)

Besides, (V k)• ⊂ Gk ⊂ V •, hence 0 /∈ (V k)• and we can apply (21) to V k. Then we write(
V k∞
)◦

= R+(V k)•

= R+G
k

( R+V
•

= V ◦∞ .

[(21)]

[(27)]

[consequence of (26)]

[(21) again]

Thus, (V k∞
)◦ ( V ◦∞, which implies (i) since polarity is an involution between closed convex cones.

To prove (ii), take r̄ in ∩kV k; we have to prove that r̄ ∈ V (the other inclusion being obvious). If
r̄ /∈ V there is a separating hyperplane d̄: σV (d̄) < d̄>r̄. Normalizing d̄ via (21), we have altogether

r̄ ∈
⋂
k

V k , d̄ ∈ V̂ ◦ , d̄>r̄ > 1 . (28)

Because σGk represents V k, we obtain with (28)

σGk(r̄) 6 1 < d̄>r̄ , hence d̄ /∈ Gk .

Then d̄ ∈ V • ∩Nk for all k (large enough), i.e. d̄ ∈ [dV , tV dV ]. Introduce dk ∈ Gk from (25):

‖dk − d̄‖ 6
1

k
and d>k r̄ 6 σGk(r̄) 6 1 .

Passing to the limit, d̄>r̄ 6 1; a contradiction to (28). Therefore r̄ ∈ V .

Now we assume the existence of an S-free set W containing V ; it satisfies in particular

W • ⊂W ◦ ⊂ V ◦ = [0, 1]V • . (29)

If W • ⊂ V •, this W is of no use to disprove maximality of V (Proposition 4.7). We are therefore in the
situation

W • 6⊂ V • , which implies from (29): 0 /∈ V • . (30)

Thus, W • contains some points out of V •. The key argument for our analysis is that one of these points
lies on an extreme ray of V ◦∞.

Lemma 5.3 (Constructing an appropriate extreme ray). Let W ⊃ V satisfy (30). There is an extreme
ray R+dV of V ◦∞ such that the set Nk defined by (24) satisfies W ◦ ∩Nk = ∅ for k large enough.
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Proof. Because of (30), we are in the framework of Corollary 3.9; Figure 7 is helpful to follow the proof.

If Ŵ ◦ ⊂ V • then W • = conv
(
Ŵ ◦
)
⊂ V •, contradiction. So there is e ∈ Ŵ ◦ (hence σW (e) = 1) which

does not lie in V •. Because V ⊂W , i.e. σV 6 σW , this e satisfies σV (e) < 1 (otherwise σV (e) = 1, hence

e ∈ V̂ ◦ ⊂ V •).

Ŵ ◦ e

de

b̄

V •B

bj0

Figure 7: The extreme ray R+bj0 contains some point in V •\W •

Then construct de := 1
σV (e)e ∈ V̂ ◦ (remember (13): σV (e) > 0). For every e′ ∈ [0, e], the seg-

ment [e′, de] contains e. Being a convex set, V • cannot contain such an e′ (otherwise it would contain e
as well). As a result, the compact convex sets V • and [0, e] can be separated: there is ` ∈ Rq (appropri-
ately scaled) such that

max
{

0, e>`
}
< 1 < min

d∈V •
d>` . (31)

Observe that
1 > e>` = σV (e)d>e ` > 0 . (32)

Now introduce the closed convex set

B :=
{
b ∈ V ◦∞ : b>` = 1

}
.

Clearly, R+B ⊂ V ◦∞. Conversely, apply (21): every nonzero d ∈ V ◦∞ can be scaled to some td ∈ V •.
By (31), td>` > 1, then d can be scaled again to td/(td>`), which lies in B. We have shown

R+B = V ◦∞ . (33)

By (21), every b ∈ B can be obtained by scaling some d ∈ V̂ ◦: b = td; and t = 1
d>`
∈ ]0, 1[ by (31). This

means that
B ⊂]0, 1[V̂ ◦ ⊂ V ◦ ; (34)

B is therefore bounded (and closed because V ◦∞ is closed), hence compact.
Using (32), scale e to b̄ := 1

e>`
e ∈ B and express b̄ =

∑
j αjbj as a convex combination of extreme

points bj of B (Minkowski’s Theorem). Then

σW (b̄) =
1

e>`
σW (e) =

1

e>`
> 1 .

By convexity of σW , there is some j0 such that σW (bj0) > 1 (we may have σW (bj0) = +∞). Altogether,
we have exhibited

bj0 extreme in B and satisfying 1 < σW (bj0) .

Extremality of bj0 in B implies extremality of the ray R+bj0 in R+B, i.e. in V ◦∞ because of (33). The
intersection of W ◦ with this extreme ray is some [0, dW ] (dW may be 0) which, by definition of a polar,
does not contain bj0 . Since b>j0` = 1 (because bj0 ∈ B), d>` < 1 for all d ∈ [0, dW ]. Then, (31) shows that
[0, dW ] and [dV , tV dV ] are separated.

As a result, the two compact sets W ◦ and [dV , tV dV ] are disjoint. If there were dk ∈ W ◦ ∩ Nk for
all k, then the bounded sequence {dk} would have some cluster point d∗; but W ◦ is closed: d∗ would lie
in W ◦ ∩ [dV , tV dV ], contradiction.
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The set B constructed in the above proof is a so-called basis of the pointed cone V ◦∞. The case
σW (bj0) = +∞, dW = 0 corresponds to a W as in the right part of Figure 3; it occurs in Figure 7. This
latter picture is still helpful to follow the proof of Theorem 5.1, which comes next.

Proof of Theorem 5.1. Take W ⊃ V such that W • 6⊂ V • and construct dV as in Lemma 5.3.

Claim 1: V ◦∞ does not reduce to R+dV . Otherwise V̂ ◦ = V • = {dV } and V ◦ = [0, dV ] (Proposition
3.6): the S-free neighborhood V , represented by σV ◦ , is the half-space {r : d>V r 6 1}, which separates 0

from Ŝ; this is ruled out by assumption.
We can therefore construct V k of Lemma 5.2. If µV is minimal, V k cannot be S-free (Lemma 5.2(i)

and Theorem 4.10): there exists rk lying

– in intV k, hence from (9)
1 > σGk(rk) , (35)

– and in S, hence rk /∈ intW : σW•(r
k) > 1; since W • is compact,

∃ek ∈W • such that e>k r
k > 1 . (36)

Claim 2: There is δ > 0 such that

tkek ∈ V • ∩Nk , for some tk > 1 + δ and all k large enough . (37)

Using (21), scale ek (nonzero from its definition) to tkek ∈ V •; and note from (29) that tk > 1. Then
(36) implies that tkek /∈ Gk: otherwise

1 6 e>k r
k 6 tke

>
k r

k 6 σGk(rk)

by definition of a support function; this contradicts (35). It follows that tkek ∈ V • ∩ Nk, which is far
from W • (Lemma 5.3); (37) is proved.

Key Claim: Decompose rk = uk + `k with uk ∈ L⊥ and `k ∈ L; there is K ⊂ N such that

lim
k∈K
‖rk‖ = +∞ and lim

k∈K
‖uk‖ = +∞ .

First, let d̄ ∈ [dV , tV dV ] be a cluster point of the bounded sequence {tkek}. Next, use (37), (36), (35)
to write for all d ∈ Gk

1 + δ 6 tk 6 tke
>
k r

k = (tkek − d)>rk + d>rk < (tkek − d)>rk + 1 .

This holds in particular for d = dk stated in (25):

δ < (tkek − dk)>rk . (38)

Then we obtain with the Cauchy-Schwarz inequality

δ < ‖tkek − d̄+ d̄− dk‖ ‖rk‖ 6
(
‖tkek − d̄‖+

1

k

)
‖rk‖ .

Furthermore, decompose rk = uk+`k in (38) and observe that both e>k `
k and d>k `

k are 0 (`k ∈ L while ek

and dk lie in V ◦∞ ⊂ L⊥). So (38) gives also

δ < (tkek − dk)>uk 6
(
‖tkek − d̄‖+

1

k

)
‖uk‖ .

Both statements of our key claim are proved since there is K ⊂ N such that limk∈K ‖tkek − d̄‖ = 0.

Case (i): Extract a cluster point r̂ of the normalized subsequence {rk}k∈K : for some K ′ ⊂ K,

lim
k∈K′

rk

‖rk‖
= r̂ .
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Then take an arbitrary M > 0. We know that M/‖rk‖ 6 1 if k is large enough in K ′ so, because both 0
and rk lie in V k ∩ Ŝ,

M

‖rk‖
rk ∈ V k ∩ Ŝ , for large enough k ∈ K ′ .

By closedness, this implies Mr̂ ∈ Ŝ, hence r̂ ∈ Ŝ∞ because M is arbitrary. The same argument using
Lemma 5.2(ii) gives r̂ ∈ V∞.

Let us sum up. In case (i), the above r̂ cannot exist: no W containing V can have W • 6⊂ V •; from
Proposition 4.7, V is maximal, i.e. µV is strongly minimal.

Case (ii): Write uk = rk− `k ∈ V k−L = V k +L ⊂ V k +V∞ ⊂ V k. Then proceed as in Case (i): extract

a cluster point û of
{

uk

‖uk‖
}
K

and argue that M
‖uk‖u

k ∈ V k ∩ L⊥ to exhibit

û ∈ V∞ ∩ L⊥ and ‖û‖ = 1 . (39)

Besides, uk is the projection onto L⊥ (a linear operator) of rk ∈ S ⊂ G+ Ŝ∞. Hence

uk ∈ ProjL⊥ G+ ProjL⊥ Ŝ∞

and, because ProjL⊥ G is a bounded set, our cluster direction û lies in ProjL⊥ Ŝ∞:

û = ŝ− ˆ̀, for some ŝ ∈ Ŝ∞ and ˆ̀∈ L .

Use (39):

Ŝ∞ 3 ŝ = û+ ˆ̀∈ V∞ + L = V∞ ;

then use (ii):
ŝ ∈ V∞ ∩ Ŝ∞ = L ∩ Ŝ∞ .

As a result, û = ŝ− ˆ̀ lies in L; use (39) again: û ∈ L ∩ L⊥ cannot have norm 1.
Thus, in this case also, no W ⊃ V exists such that W • 6⊂ V •; µV is strongly minimal.

6 Conclusion and perspectives

In this paper, we have laid down some basic theory toward studying the cutting paradigm for sets of the
form (1); thus putting in perspective an abundant literature devoted to S-free sets. We have disclosed
the concept of strong minimality, which corresponds to maximal S-freeness; and we have given a result
to recover existing theorems [15, 7, 3, 9, 4], dealing with mere minimality. This theory necessitates a
generalization of the polarity correspondence to unbounded sets; we have re-proven and revisited the
results of [5], revealing the distinction between smallest and largest prepolars.

A number of questions arise from this theoretical work. Some are suggested by Section 3:

Question 1. Given a convex compact set G, can we compute the minimal prepolar of V = G◦? or at least
detect whether V • = G? Similarly, does there exist a simple construction of V • or µV , skipping (16)?

Question 2. Can the polarity theory be further generalized to sets V having the origin on their boundary,
or even not containing the origin at all?

These are limited to pure convex analysis; concerning the cgf theory itself, some other questions have a
concrete interest.

Question 3. Is it possible to characterize exactly the S-free sets represented by minimal cgf’s? a converse
form of Theorem 4.10 should be desirable.

Question 4. One might want to consider more general models. For example, it should not be too difficult
to replace the “ground set” Rn+ of (1a) by some other closed convex cone; say the cone of positive semi-
definite matrices, which would open the way toward cutting SDP relaxations. Another generalization
would be inspired by the approach of [11] of Example 1.1: there, X has the form{

x ∈ Zn+ : −Ax ∈ Zm − b
}

;

S = Zm − b lies in a smaller space but the ground set Zn+ is no longer convex, so sublinear cgf’s are
now ruled out. Instead, cgf’s in this context are subadditive, periodic, and satisfy a certain symmetry
condition [12].
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Question 5. Perhaps the most crucial question is whether cgf’s do generate all possible cuts, i.e., whether
(5) is able to produce all possible c’s satisfying (2). This turns out to be a tough nut to crack, we
conclude the paper with some considerations for future research concerning it.

The following counter-example shows that the answer to Question 5 is no in general.

Example 6.1 (cgf’s need not generate all cuts). In R2, take S = (0, 1)∪
{

(Z,−1)
}

(we take row-vectors
for typographical convenience). The left part of Figure 8, drawn in the S-space, clearly shows that, if
the unit-vector (1, 0) lies in the recession cone of an S-free neighborhood V , then it lies on the boundary
of this cone.

x1

r2

V

r1

x2

c
X

Figure 8: Not all cuts are obtained from a cgf

Now take the identity matrix for R: X reduces to the singleton (0, 1) in R2 (right part of Figure 8).
It can be separated from the origin by the cut x2 > x1 + 1, obtained with c = (−1, 1)>. Knowing that
the first column of R is r1 = (1, 0)>, a cgf ρ producing this c must therefore have ρ(r1) = −1. In view
of Lemma 3.1, (1, 0) lies in the interior of V∞; but we have seen that no V can satisfy this.

Negative cj ’s are therefore troublesome, a general sufficiency theorem is out of reach. To eliminate
cj < 0, we can restrict the class of instances:

Proposition 6.2. If the recession cone of conv(X) is the whole of Rn+, then every cut c lies in Rn+.

Proof. Each basis vector ej of Rn lies in
[
conv(X)

]
∞: picking some x ∈ X,

c>(x+ tej) = c>x+ tcj > 1 for all t > 0 ;

let t→ +∞ to see that cj > 0.

To overcome the above difficulty, a line of attack might follow Question 4 above: restrict the class of
cgf’s by changing (1a) to {

x ∈ Rn+ ∩B : Rx ∈ S
}
.

On the other hand, the restriction imposed by Proposition 6.2 does not suffice, as even cj = 0 brings
trouble. In fact, make a “more nonlinear” variant of Example 6.1: instead of the horizontal line r2 = −1,
take for S the curve r2 = −1/|r1| (r1 6= 0). This leaves X = {(0, 1)} unchanged; c = (0, 1)> is a cut
and a cgf ρ generating it has ρ(r1) = 0; this ρ represents a set V (ρ) which has (R+, 0) in its recession
cone. Being a neighborhood of the origin, V (ρ) contains A := (0,−ε) for small enough ε > 0; also,
B := (r, 0) ∈ V (ρ)∞ ⊂ V (ρ) for all r > 0 (see Figure 9); by convexity, the whole segment [A,B] lies in
V (ρ), which therefore cannot be S-free.

r2

A

B
r1

Figure 9: Trouble appears when V∞ is an asymptote of S

In these two examples, the conical hull of the rj ’s does not cover the whole of S. In fact, S contains
points that can be reached by no x ∈ Rn+; these points have nothing to do with the problem, so forcing
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V not to contain them is unduly demanding. In a way, the diffulty is again linked to Question 4. Then
one may ask whether cgf’s are able to describe all possible cuts, for all possible instances such that
S ⊂ cone (r1, . . . , rn). This is an open question; here we limit ourselves to a reasonably simple sufficiency
result, proved with the help of a “comfortable” assumption.

Theorem 6.3. Let an instance of (1) be as described by Proposition 6.2 and assume

cone (r1, . . . , rn) :=
{ n∑
j=1

λjrj : λj > 0, j = 1, . . . , n
}

= Rq .

Then every cut can be obtained from a cgf.

Proof. Let c ∈ Rn+ and set

J+ :=
{
j ∈ {1, . . . , n} : cj > 0

}
, J0 :=

{
j ∈ {1, . . . , n} : cj = 0

}
.

Then introduce in Rq the vectors
r′j :=

rj
cj
, for j ∈ J+

and the polyhedron

V := G+K , with

{
G := conv {r′j : j ∈ J+} ,
K := cone {rj : j ∈ J0} .

Claim 1: V is a neighborhood of the origin. In fact, our assumption means that Rq = cone (G) + K:
every d̄ ∈ Rn has the form

d̄ = t̄ḡ + k̄ , with t̄ > 0 , ḡ ∈ G , k̄ ∈ K .

Then compute σV
(
d̄
)

for nonzero d̄.

– Case 1: t̄ = 0. Fixing g ∈ G so that g + tk̄ ∈ V for all t > 0, we have

σV
(
d̄
)

= σV
(
k̄
)
> k̄>

(
g + tk̄

)
= k̄>g + t‖k̄‖2 , for all t > 0 ;

let t→ +∞ to see that σV
(
d̄
)

= +∞.

– Case 2: t̄ > 0. Scale d̄ to t̄−1d̄ ∈ G+K = V to obtain σV
(
d̄
)
> t̄−1‖d̄‖2 > 0.

Altogether, we have proved that σV
(
d̄
)
> 0 for all d̄ 6= 0, i.e. 0 ∈ int (V ).

Claim 2: V is S-free. Take r̄ ∈ int (V ). For ε > 0 small enough, r̄ + εr̄ ∈ V :

(1 + ε)r̄ =
∑
j∈J+

βjr
′
j +

∑
j∈J0

µjrj , with βj , µj > 0,
∑
j∈J+

βj = 1 .

Divide by 1 + ε and set αj = βj/(1 + ε), λj = µj/(1 + ε) to get

r̄ =
∑
j∈J+

αjr
′
j +

∑
j∈J0

λjrj , , for αj , λj > 0 ,

n∑
j=1

αj < 1 .

Introduce the vector x̄ ∈ Rn whose coordinates are

x̄j :=


αj
cj

if j ∈ J+ ,

λj if j ∈ J0 .

Observe that x̄ > 0 and that

Rx̄ =
n∑
j=1

x̄jrj =
∑
j∈J+

αj
cj
rj +

∑
j∈J0

λjrj = r̄ .
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If r̄ ∈ S then x ∈ X by definition (1a); but

c>x̄ =
∑
j∈J+

cj
αj
cj

=
∑
j∈J+

αj 6
n∑
j=1

αj < 1

and x cannot lie in X if c is a cut. We have proved that int (V ) ∩ S = ∅, i.e. that V is S-free.

Conclusion: We have proved that the gauge γV is a cgf; besides

– for j ∈ J0, rj is a direction of recession of V : γV (rj) = 0 = cj ;

– for j ∈ J+, the property r′j ∈ V gives

1 > γV (r′j) =
1

cj
γV (rj) , hence γV (rj) 6 cj .

In summary, γV is a cgf dominating the cut c.

To make Question 5 less ambitious, one may ask whether cgf’s can reproduce the set of cuts “glob-
ally”. In fact, the set of c’s satisfying (2) is a closed convex set: the opposite of the reverse polar X−,
in the terminology of [2, 8]. Then consider the set RS of all representations of a given S-free set. Given
(n,R), form the set C of c ∈ Rn whose coordinates are ρ(rj), where ρ describes RS . Is it true that
conv(C) = −X−? This question is open. If the answer is yes, one more question occurs: Example 4.8
tells us that RS cannot be reduced to the maximal S-free sets; then, what sort of maximality can be
imposed while preserving “completeness” of RS? An answer should need answering Question 3 first.
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[16] J. J. Júdice, H. Sherali, I. M. Ribeiro, and A. M. Faustino. A complementarity-based partioning and
disjujnctive cut algorithm for mathematical programming problems with equilibrium constraints. J. Global
Opt., 136:89–114, 2006.

[17] L. Lovász. Geometry of numbers and integer programming. In M. Iri and K. Tanabe, editors, Mathematical
Programming: Recent Developements and Applications, pages 177–210. Kluwer, 1989.

[18] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

23


	Introduction
	Motivating examples
	Introducing cut-generating functions
	Scope of the paper

	Cut-generating functions: definitions and first results
	Largest and smallest representations
	Some elementary convex analysis
	Largest representation
	Smallest representation
	The set of prepolars

	Minimal cgf's, maximal S-free sets
	Minimality
	Strong minimality
	Asymptotic maximality

	Favourable cases
	Conclusion and perspectives

