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Abstract
We construct a differentiable locally Lipschitz function
𝑓 in ℝ𝑁 with the property that for every convex body
𝐾 ⊂ ℝ𝑁 there exists �̄� ∈ ℝ𝑁 such that 𝐾 coincides with
the set 𝜕𝐿𝑓(�̄�) of limits of derivatives {𝐷𝑓(𝑥𝑛)}𝑛⩾1 of
sequences {𝑥𝑛}𝑛⩾1 converging to �̄�. The technique can
be further refined to recover all compact connected sub-
sets with nonempty interior, disclosing an important
difference between differentiable and continuously dif-
ferentiable functions. It stems out from our approach
that the class of these pathological functions contains
an infinite-dimensional vector space and is dense in
the space of all locally Lipschitz functions for the
uniform convergence.
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1 INTRODUCTION

Given a nonempty open subset  of a Euclidean space ℝ𝑁 , a function 𝑓 ∶  → ℝ is called
Lipschitz if there exists a constant 𝐿 > 0 such that

|𝑓(𝑥) − 𝑓(𝑦)| ⩽ 𝐿 ‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈  . (1.1)

We denote by ‖𝑓‖Lip the infimum of the above constants, so that:

‖𝑓‖Lip = sup
𝑥,𝑦∈ , 𝑥≠𝑦

|𝑓(𝑥) − 𝑓(𝑦)|‖𝑥 − 𝑦‖ . (1.2)

In what follows, we call a function 𝑘-Lipschitz if ‖𝑓‖Lip ⩽ 𝑘, where 𝑘 ⩾ 0. We also call a function
locally Lipschitz, if around any point 𝑥0 of its domain, there exists 𝑘 > 0 and a neighborhood 
of 𝑥0 such that the function 𝑓 is 𝑘-Lipschitz on  .
According to the Rademacher theorem, every locally Lipschitz function is differentiable almost

everywhere (see [6, Chapter 9], for example). If is any null subset of  ⊂ ℝ𝑁 , then denoting
by𝑓 the set of points of differentiability of 𝑓 and by 𝐷𝑓(𝑥) the derivative of 𝑓 at a point 𝑥 ∈ 𝑓 ,
the Clarke subdifferential at 𝑥 ∈  is given by the following formula (see [12, Chapter 2]):

𝜕𝑓(𝑥) = conv

{
lim
𝑥𝑛→𝑥

𝐷𝑓(𝑥𝑛) ∶ {𝑥𝑛} ⊆ 𝑓⟍
}
, (1.3)

where conv(𝐴) stands for the convex envelope of a set 𝐴. It follows that the above definition is
independent of the choice of and that 𝜕𝑓(𝑥) is a nonempty convex compact subset of the closed
dual ball 𝐵(0, ‖𝑓‖Lip) containing the derivative 𝐷𝑓(𝑥), whenever this latter exists.
The Clarke subdifferential admits an alternative description based on Fréchet subgradients,

without explicit use of derivatives or the above null set. We recall that 𝑥∗ ∈ ℝ𝑁 is a Fréchet sub-
gradient of 𝑓 at 𝑥 (and denote 𝑥∗ ∈ 𝜕𝑓(𝑥)) if 𝑥∗ = ∇𝜙(𝑥) for some 1-smooth function 𝜙 ⩽ 𝑓with
𝜙(𝑥) = 𝑓(𝑥). Then we say that 𝑝 ∈ ℝ𝑁 is a limiting subgradient of 𝑓 at 𝑥, and denote 𝑝 ∈ 𝜕𝐿𝑓(𝑥),
if there exists a sequence {(𝑥𝑛, 𝑥

∗
𝑛)}𝑛 in ℝ𝑁 × ℝ𝑁 with 𝑥∗𝑛 ∈ 𝜕𝑓(𝑥𝑛) such that lim𝑛→∞𝑥𝑛 = 𝑥

and lim𝑛→∞𝑥
∗
𝑛 = 𝑝. The Clarke subdifferential can then be defined as the convex envelope

of the limiting subdifferential, that is, 𝜕𝑓(𝑥) = conv {𝜕𝐿𝑓(𝑥)}, for every locally Lipschitz func-
tion 𝑓. Therefore, 𝜕𝐿𝑓(𝑥) ⊂ 𝜕𝑓(𝑥). Notice that if 𝑓 is everywhere differentiable, the limiting
subdifferential is given by the formula:

𝜕𝐿𝑓(𝑥) ∶=

{
lim
𝑥𝑛→𝑥

𝐷𝑓(𝑥𝑛)

}
(1.4)

and if 𝑓 is 1-smooth, we have 𝜕𝑓(𝑥) = 𝜕𝐿𝑓(𝑥) = {𝐷𝑓(𝑥)}, for all 𝑥 ∈  . In fact, for a Lipschitz
function𝑓, 𝜕𝑓(𝑥) reduces to a singleton if and only if𝑓 is strictly differentiable at𝑥 [12, Proposition
2.2.4].
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 3 of 27

Notice that ‖ ⋅ ‖Lip is a seminorm in the vector space Lip( ) of all real-valued Lipschitz
functions on  and becomes a norm in the subspace Lip𝑥0( ) of those functions that van-
ish at some (arbitrarily chosen) prescribed point 𝑥0 ∈  . In particular, (Lip𝑥0( ), ‖ ⋅ ‖Lip) is
a Banach space (known also as the dual space of the free space of  ). Alternatively, setting‖ ⋅ ‖L ∶= ‖ ⋅ ‖∞ + ‖ ⋅ ‖Lip and denoting by∞( ) the set of bounded functions on , the normed
space (Lip( ) ∩ ∞( ), ‖ ⋅ ‖L) is also complete.
If the set is bounded, one can also consider the norm ‖𝑓‖∞ ∶= sup {|𝑓(𝑥)| ∶ 𝑥 ∈  } of uni-

form convergence. In this case (Lip( ), ‖ ⋅ ‖∞) is not complete (in fact, it is dense in the Banach
space (𝑏( ), ‖ ⋅ ‖∞) of bounded continuous functions). However, one can remedy this lack of
completeness by considering the set Lip[𝑘]( ) of Lipschitz continuous functions with Lipschitz
constant ‖𝑓‖Lip ⩽ 𝑘. This set is a complete metric space under the distance of uniform conver-
gence 𝑑∞(𝑓, g) ∶= ‖𝑓 − g‖∞. In this setting (where the vector structure is of course lost) and
assuming that  is convex, a standard application of Baire’s category theorem has been used by
J. Borwein and X. Wang (see [9, 10], for example) to establish that the set of Lipschitz functions
with maximal Clarke subdifferential (i.e., 𝜕𝑓(𝑥) ≡ 𝐵(0, 𝑘) for all 𝑥 ∈  ) is residual in Lip[𝑘]( ).
Therefore, a generic Lipschitz function in Lip[𝑘]( ) has Lipschitz constant equal to 𝑘 and satu-
rates its Clarke subdifferential at every point. The first explicit construction of a Clarke-saturated
function was given in [20] (in dimension one) and in [8] (in higher dimensions).
The aforementioned result of J. Borwein and X. Wang underlines the fact that uniform con-

vergence does not entail any control on derivatives and local oscillations. The genericity is thus
tightly related to the 𝑑∞-topology: One easily sees that the set of Clarke-saturated functions (i.e.,
functionswhose subdifferential is identically equal to the closed ball𝐵(0, ‖𝑓‖Lip)) cannot be dense
for the (more adequate) distance 𝑑Lip(𝑓, g) = ‖𝑓 − g‖Lip given by the Lipschitz norm. Still, in [14]
it was established that the set of Clarke-saturated functions is spaceable in (Lip( ), ‖ ⋅ ‖L), that is,
it contains a closed infinite-dimensional subspace (see [1, 15] for a discussion about spaceability).
The construction of this infinite-dimensional subspace of Clarke-saturated functions is explicit,
but the result requires working in 𝓁𝑁

1
(rather than in the usual Euclidean space ℝ𝑁).

Let us mention for completeness that important subclasses of Lipschitz functions, such as
semialgebraic (more generally, Whitney stratifiable) or finite selections of 𝑁-smooth functions
have small Clarke subdifferentials: They often reduce to a singleton and the (generalized) critical
values satisfy the conclusion of the Morse–Sard theorem, see [4, Corollary 5(ii)] and [3, The-
orem 5], respectively. On the other hand, every point of a Clarke-saturated Lipschitz function
is (Clarke) critical, since 0 ∈ 𝜕𝑓(𝑥) ≡ 𝐵(0, ‖𝑓‖𝐿). Other pathological situations have also been
detected in [13] where the authors constructed examples of Lipschitz continuous functions with
finite Clarke critical values, but with pathological subgradient dynamics both in continuous and
discrete time: The iterates generate bounded trajectories that fail to detect any Clarke critical
point of the function. Finally, in [7] the authors constructed locally Lipschitz functions whose
subdifferential assumes a prescribed set of values.
In this work, we establish the following result for the range of the Clarke subdifferential. (The

term convex body employed below will refer to a compact convex set with nonempty interior.)

∙ There exists a compactly supported, differentiable 1-Lipschitz function 𝑓 ∶ ℝ𝑁 → ℝ whose
Clarke subdifferential contains all convex bodies of the closed unit ball.

The construction is different for 𝑁 = 1 (Theorem 3.7) and for 𝑁 ⩾ 2 (Theorem 3.12). In the first
case, the function 𝑓 is also subdifferentially exhaustive (see Definition 2.4), that is, its Clarke
subdifferential takes all of its possible values. In both cases, 𝑁 = 1 and 𝑁 ⩾ 2, the construction
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reveals that the set of all such functions whose support is contained in an open bounded set 
of ℝ𝑁 is spaceable in (Lip( ), ‖ ⋅ ‖L) and dense in (Lip[1]( ), 𝑑∞), see Remark 3.8 (v),(vi) and
Subsection 3.2.
By enhancing the techniques employed in Subsection 3.2 we obtain, in Subsection 3.3, a more

general result (Theorem 3.16), that recovers all compact connected subsets of ℝ𝑁 with nonempty
interior (not only the convex bodies). The construction requires 𝑁 ⩾ 2 (but for 𝑁 = 1 the two
notions coincide anyway). The general result reads as follows:

∙ There exists a compactly supported, differentiable function 𝑓 ∶ ℝ𝑁 → ℝ whose limiting
subdifferential contains all compact connected subsets of ℝ𝑁 with nonempty interior.

2 PREREQUISITES

We recall that the term Polish space refers to any separable topological space, whose topology can
be metrizable in a way that the resulting metric space is complete. We denote by Δ ∶= {0, 1}ℕ the
Cantor set and recall that every uncountable Polish space contains a homeomorphic copy of Δ,
see [18, Corollary 6.5].
In this work, we consider the Euclidean space ℝ𝑁 , 𝑁 ⩾ 1, and denote by 𝐵(0, 𝑟) (respectively,

𝐵(0, 𝑟)) the open (respectively, closed) ball centered at 𝑥 ∈ ℝ𝑁 with radius 𝑟 > 0.
Given a nonempty convex compact subset 𝐶 of ℝ𝑁 we set:

𝐶 ∶= {𝐾 ⊂ 𝐶 ∶ 𝐾 ≠ ∅, compact}. (2.1)

It is known that 𝐶 is a compact metric space for the Hausdorff distance

𝐷H(𝐾1, 𝐾2) ∶= max

{
sup
𝑥∈𝐾1

𝑑(𝑥, 𝐾2), sup
𝑥∈𝐾2

𝑑(𝑥, 𝐾1)

}
, (2.2)

where 𝑑(𝑥, 𝐴) ∶= inf {‖𝑥 − 𝑎‖ ∶ 𝑎 ∈ 𝐴} for every 𝐴 ⊂ ℝ𝑁 . We further set

𝐶 ∶= {𝐾 ⊂ 𝐶 ∶ 𝐾 ≠ ∅, compact convex}. (2.3)

Notice that𝐶 is a closed subset of 𝐶 under the Hausdorff distance, therefore (𝐶, 𝐷H) is also a
compact metric space.
In what follows, we denote by 𝑁 the Lebesgue measure on ℝ𝑁 . Given an integrable function

𝑓 ∶ ℝ𝑁 → ℝ, we say that a point 𝑥 is a Lebesgue point of 𝑓 if

lim
𝑟↘0+

1

𝑁(𝐵(𝑥, 𝑟)) ∫
𝐵(𝑥,𝑟)

|𝑓(𝑦) − 𝑓(𝑥)|𝑑𝑦 = 0.

Therefore, a Lebesgue point is a point where 𝑓 does not oscillate in an average sense, see [16,
section 1.7]. It is known that the set of Lebesgue points of every integrable function 𝑓 is of
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full-measure. In particular, for a.e. 𝑥 ∈ ℝ𝑁 it holds

||||||||𝑓(𝑥) −
⎛⎜⎜⎜⎝

1

𝑁(𝐵(𝑥, 𝑟)) ∫
𝐵(𝑥,𝑟)

𝑓(𝑦)𝑑𝑦

⎞⎟⎟⎟⎠
|||||||| ⟶𝑟→0

0 (Lebesgue differentiation theorem).

Let us further recall the interval splitting property for subsets of the real line, see [19]

Definition 2.1 (splitting property).

(i). A set𝐴 ⊂ ℝ is called everywhere positive-measured, if it intersects any nontrivial interval in
a set of positive Lebesgue measure.

(ii). We say that 𝐴 has the splitting property for the family of intervals of ℝ if both 𝐴 and ℝ⟍𝐴

are everywhere positive-measured.

The following lemma goes back to Bruckner [11] (see also [24, Lemma 4.1]).

Lemma 2.2 (countable splitting partition). There exists a countable partition {𝐴𝑘}𝑘∈ℕ ofℝ, each of
which splits the family of intervals.

Let us now recall that given a nonempty open subset  of ℝ𝑁 and a 𝑘-Lipschitz function
𝑓 ∶  → ℝ, the Clarke subdifferential operator 𝜕𝑓 ∶  ⇉ ℝ𝑁 has closed graph and nonempty
convex compact values (in particular, 𝜕𝑓(𝑥) ⊂ 𝐵(0, 𝑘) for every 𝑥 ∈  ). We also recall that 𝜕𝑓 is
an upper semicontinuousmultivalued operator, in the sense that for every 𝜀 > 0 and 𝑥 ∈  , there
exists 𝛿 > 0 such that for all 𝑦 ∈ 𝐵(𝑥, 𝛿) ∩ it holds 𝜕𝑓(𝑦) ⊂ 𝜕𝑓(𝑥) + 𝐵(0, 𝜀).
In what follows, will denote a nonempty open subset ofℝ𝑁 . We recall from [14] the following

definition.

Definition 2.3 (subdifferential saturation). A Lipschitz function 𝑓 ∶  → ℝ is called Clarke
saturated if for every 𝑥 ∈  we have 𝜕𝑓(𝑥) = 𝐵(0, ‖𝑓‖Lip).
Therefore, a Lipschitz function 𝑓 with ‖𝑓‖Lip = 1 is Clarke saturated if and only if its Clarke

subdifferential at any point is equal to the unit ball of ℝ𝑁 .
We shall further use the following terminology.

Definition 2.4 (subdifferential exhaustiveness). A Lipschitz function 𝑓 ∶  → ℝ is called
Clarke exhaustive (respectively, almost exhaustive) if for any nonempty closed convex subset
𝐾 (respectively, of nonempty interior) of the ball 𝐵(0, ‖𝑓‖Lip), there exists 𝑥 ∈  such that
𝜕𝑓(𝑥) = 𝐾.

3 MAIN RESULTS

In this section, we are going to construct an everywhere differentiable function in ℝ𝑁

with bounded derivatives (thus, in particular, a Lipschitz continuous function) whose Clarke
subdifferential is almost exhaustive. This yields the result announced in the title of the paper.
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The construction requires at least two dimensions (i.e.,𝑁 ⩾ 2), but the result is also true for𝑁 =

1 through a different construction which will be treated first. Moreover, in the one-dimensional
case the constructed function turns out to be Clarke-exhaustive, that is, the subdifferential is
surjective (assuming all of its possible values).
Since we deal with functions that are everywhere differentiable, the result is rather unexpected,

taking into account that the derivative is a Baire-1 function (therefore, generically continuous) and
the Clarke subdifferential of a strictly differentiable function (thus, a fortiori, of a 𝐶1-function) is
singleton everywhere.
As amatter of fact, our results also hold for the (smaller) limiting subdifferential, see forthcom-

ing Remark 3.8(i) (for𝑁 = 1) andRemark 3.13 (for𝑁 ⩾ 2). A further refinementwill be performed
in Section 3.3 where we eventually show that there exists a differentiable, locally Lipschitz func-
tion such that every compact connected subset ofℝ𝑁 with nonempty interior appears in the range
of its limiting subdifferential.

3.1 Subdifferentially exhaustive differentiable functions in ℝ

Let 𝑓 ∶ (0, 1) → ℝ be 1-Lipschitz. Then for every 𝑥 ∈ (0, 1), the subdifferential 𝜕𝑓(𝑥) is a
nonempty closed subinterval of [−1, 1] (possibly reducing to a singleton). We shall need the
following notation:

𝕋+ =
{
(𝑎, 𝑏) ∈ ℝ2 ∶ 0 ⩽ 𝑎 ⩽ 𝑏 ⩽ 1

}
. (3.1)

Let us start with the following essentially known result.

Lemma 3.1. There exists a continuous surjective curve 𝛾1 ∶ [0, 1] → 𝕋+ such that 𝛾1((0, 1)) = 𝕋+.

Proof. It is well known that there exists a continuous surjective curve 𝛾0 ∶ [0, 1] → [0, 1] × [0, 1].
This map is called a Peano curve, see [22]. The function 𝜑 ∶ ℝ2 → ℝ2 defined by

𝜑(𝑎, 𝑏) =
(
min{𝑎, 𝑏},max{𝑎, 𝑏}

)
is continuous andmaps [0, 1] × [0, 1] onto𝕋+. Thus, the function 𝛾1 = 𝜑 ◦ 𝛾0 satisfies the assertion
of the statement. □

3.1.1 An easy nonsmooth example

Let us first provide a straightforward construction of a 1-Lipschitz Clarke exhaustive function
(omitting momentarily the additional requirement of being everywhere differentiable).

Theorem 3.2 (exhaustive Lipschitz function inℝ). There exists a Lipschitz function 𝑓 ∶ [0, 1] → ℝ

with ‖𝑓‖Lip = 1 such that for every nonempty closed interval [𝑎, 𝑏] ⊂ [−1, 1], there exists 𝑥 ∈ (0, 1)

such that 𝜕𝑓(𝑥) = [𝑎, 𝑏], that is, 𝜕𝑓([0, 1]) = [−1,1].

Proof. Let 𝛾1(𝑡) =
(
𝑎(𝑡), 𝑏(𝑡)

)
, with 𝑡 ∈ [0, 1], be the continuous curve given by Lemma 3.1 and

let 𝐴 ⊂ (0, 1) be a measurable set that splits the family of nonempty open intervals of [0,1]
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 7 of 27

(cf. Definition 2.1(ii)). The required function 𝑓 is explicitly defined as follows:

𝑓(𝑥) = ∫
𝑥

0

[
𝑎(𝑡)𝟏𝐴(𝑡) + 𝑏(𝑡)𝟏[0,1]∖𝐴(𝑡)

]
𝑑𝑡.

Indeed, let us prove that for every 𝑥 ∈ [0, 1], we have 𝜕𝑓(𝑥) = [𝑎(𝑥), 𝑏(𝑥)].
To this end, let us first consider a Lebesgue point 𝑡 ∈ 𝐴 of the function 𝟏𝐴. Since 𝑎 is continuous,

we have that 𝑓′(𝑡) exists and 𝑓′(𝑡) = 𝑎(𝑡). Similarly, if 𝑠 ∈ (0, 1) ⧵ 𝐴 is a Lebesgue point of the
function 𝟏[0,1]∖𝐴, then 𝑓′(𝑠) exists and 𝑓′(𝑠) = 𝑏(𝑠). Fix now 𝑥 ∈ (0, 1) (arbitrarily chosen). Since
any open interval containing 𝑥 meets the sets 𝐴 and [0, 1]∖𝐴 on a set of positive measure, we
deduce that 𝑎(𝑥) ∈ 𝜕𝑓(𝑥) and 𝑏(𝑥) ∈ 𝜕𝑓(𝑥), yielding [𝑎(𝑥), 𝑏(𝑥)] ⊂ 𝜕𝑓(𝑥).
To establish the other inclusion, let us fix 𝜀 > 0 and

 ∶= {𝑥 ∈ [0, 1] ∶ 𝑥 is not a Lebesgue point for 𝑓}.

Since the functions 𝑎, 𝑏 are continuous, there exists 𝛿 > 0 such that |𝑎(𝑡) − 𝑎(𝑥)| ⩽ 𝜀 and |𝑏(𝑡) −
𝑏(𝑥)| ⩽ 𝜀, for all 𝑡 ∈ (𝑥 − 𝛿, 𝑥 + 𝛿). It follows that 𝜕𝑓(𝑥) ⊂ [𝑎(𝑥) − 𝜀, 𝑏(𝑥) + 𝜀]. Since 𝜀 > 0 is
arbitrarily chosen, we deduce 𝜕𝑓(𝑥) ⊂ [𝑎(𝑥), 𝑏(𝑥)] and consequently, equality holds.
Recalling that 𝛾1 satisfies Lemma 3.1, for every nonempty closed interval [𝑎, 𝑏] ⊂ [0, 1],

there exists 𝑥 ∈ (0, 1) such that 𝛾1(𝑥) = (𝑎, 𝑏) ∈ 𝕋+ ⊂ ℝ2, and consequently, 𝜕𝑓(𝑥) = [𝑎, 𝑏].
Replacing 𝑓 by the function

𝑓(𝑥) ∶= 2𝑓(𝑥) − 𝑥, for all 𝑥 ∈ [0, 1],

we obtain a function 𝑓 which is also 1-Lipschitz: Indeed, notice that 𝑓′(𝑥) = 2𝑓′(𝑥) − 1 ∈ [−1, 1]

whenever 𝑓′(𝑥) exists. It follows directly that

𝜕𝑓((0, 1)) =
{
[𝑎, 𝑏]; −1 ⩽ 𝑎 ⩽ 𝑏 ⩽ 1

}
= [−1,1].

The proof is complete. □

Remark 3.3. Notice that the set of bounded 1-Lipschitz Clarke exhaustive functions in ℝ cannot
be 𝑑∞-residual in the (complete) metric space (Lip[1](ℝ), 𝑑∞) of all bounded 1-Lipschitz functions
inℝ, since it shares with the set of Clarke-saturated functions (which is known to be 𝑑∞-residual,
see [9]) only the null function 𝑓 ≡ 0. However, we shall see later (Remark 3.8(iv)) that the set of
bounded 1-Lipschitz functions in ℝ that are Clarke exhaustive is dense in (Lip[1](ℝ), 𝑑∞).

3.1.2 An involved construction ensuring differentiability

We shall now enhance the result of Theorem 3.2 by adding the requirement that the constructed
function 𝑓 should also be everywhere differentiable. The construction becomes more involved,
but remains explicit. Before we proceed, we shall need the following preliminary results (lower
integral estimations for 𝜈-root type functions).

Lemma 3.4 (lower integral estimation I). There exists a function 𝜎 ∶ (0, 1) → (0, 1] satisfying
lim
𝜈→0

𝜎(𝜈) = 0 such that for every 𝑥, ℎ ∈ ℝ with ℎ ≠ 0, we have:

1

ℎ ∫
𝑥+ℎ

𝑥
|𝑡|𝜈𝑑𝑡 ⩾ |𝑥|𝜈(1 − 𝜎(𝜈)

)
. (3.2)
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8 of 27 DANIILIDIS et al.

Proof. If 𝑥 = 0 the assertion follows trivially. Therefore, wemay assume 𝑥 ≠ 0. Since the functions
𝑥 → |𝑥|𝜈 are even, we can limit our attention to the case ℎ > 0. We set:

𝐼 =
1

ℎ ∫
𝑥+ℎ

𝑥
|𝑡|𝜈𝑑𝑡.

We consider successively all four possible cases:
We first assume 𝑥 > 0 and 𝑡 ∈ [𝑥, 𝑥 + ℎ]. In this case, |𝑡|𝜈 ⩾ |𝑥|𝜈 and 𝐼 ⩾ |𝑥|𝜈, therefore (3.2)

holds for any function 𝜎 with nonnegative values.
Let us now assume 𝑥 < 0 < 𝑥 + ℎ ⩽ |𝑥|. A direct computation gives:

𝐼 =

(
1 + 𝑦1+𝜈

1 + 𝑦

)( |𝑥|𝜈
1 + 𝜈

)
, where 𝑦 ∶=

𝑥 + ℎ|𝑥| ∈ [0, 1]. (3.3)

Consider the (continuous) functions Ψ𝜈 ∶ [0, 1] → [0, +∞), 𝜈 ∈ (0, 1), defined by

Ψ𝜈(𝑦) =
1 + 𝑦1+𝜈

(1 + 𝜈)(1 + 𝑦)
, 𝑦 ∈ [0, 1].

Then the functions {Ψ𝜈}𝜈>0 converge pointwise to the function Ψ ≡ 1 as 𝜈 tends to 0. Since the
above convergence is monotone, we deduce from Dini theorem that the convergence is uniform.
Setting

𝜎(𝜈) ∶= 1 − min
𝑦∈[0,1]

1 + 𝑦1+𝜈

(1 + 𝜈)(1 + 𝑦)
, (3.4)

we readily deduce that lim
𝜈→0

𝜎(𝜈) = 0. Therefore, (3.3) yields

𝐼 ⩾ |𝑥|𝜈(1 − 𝜎(𝜈))

and (3.2) holds true for 𝜎 given in (3.4).
If 𝑥 < 𝑥 + ℎ ⩽ 0, then a direct computation yields

𝐼 ⩾
|𝑥|𝜈
1 + 𝜈

=
(
1 −

𝜈

1 + 𝜈

)|𝑥|𝜈 ⩾ (1 − 𝜎(𝜈))|𝑥|𝜈,
where 𝜎 is given by (3.4).
It remains to deal with the case 𝑥 < 0 < |𝑥| < 𝑥 + ℎ. In this case, we have

𝐼 =
1

ℎ ∫
|𝑥|

𝑥
|𝑡|𝜈𝑑𝑡 + 1

ℎ ∫
𝑥+ℎ

|𝑥| |𝑡|𝜈𝑑𝑡 ⩾ 1

ℎ

{
(|𝑥| − 𝑥)|𝑥|𝜈(1 − 𝜎(𝜈)

)
+ (𝑥 + ℎ − |𝑥|)|𝑥|𝜈}

⩾ (1 − 𝜎(𝜈)) |𝑥|𝜈.
Therefore, (3.2) is still satisfied and the proof is complete. □
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 9 of 27

We now extend (3.2) to a more general class of functions. Fixing parameters 𝑑 ∈ ℝ,𝑚 > 0, and
𝜀 > 0, we set for each 𝜈 ∈ (0, 1)

𝑅(𝑡) = min

{
𝑚𝜈,

(|𝑡 − 𝑑|
𝜀

)𝜈}
, 𝑡 ∈ ℝ. (3.5)

The above function is continuous and nonnegative. The following result shows that𝑅 also satisfies
the same lower integral estimation as in (3.2).

Lemma 3.5 (lower integral estimation II). For every 𝑥, ℎ ∈ ℝ with ℎ ≠ 0, the function 𝑅 given
in (3.5) satisfies

1

ℎ ∫
𝑥+ℎ

𝑥
𝑅(𝑡)𝑑𝑡 ⩾ 𝑅(𝑥)

(
1 − 𝜎(𝜈)

)
, (3.6)

where 𝜎 ∶ (0, 1) → (0, 1] is the function defined in Lemma 3.4.
(Notice that this integral estimate does not depend on the values of the parameters 𝜀, 𝑑, and𝑚.)

Proof. We first consider the case 𝜀 = 1 and 𝑑 = 0. Let 𝑥 ∈ ℝ and ℎ > 0. If 𝑚 ⩽ 𝑥 < 𝑥 + ℎ or if
𝑥 < 𝑥 + ℎ ⩽ −𝑚, there is nothing to prove since in both cases the function 𝑅 is constant on the
interval [𝑥, 𝑥 + ℎ]. The case −𝑚 ⩽ 𝑥 < 𝑥 + ℎ ⩽ 𝑚 follows from the previous lemma, since in this
case 𝑅(𝑡) = |𝑡|𝜈 on [𝑥, 𝑥 + ℎ].
Let us now consider the case −𝑚 ⩽ 𝑥 ⩽ 𝑚 < 𝑥 + ℎ. Then, according to the previous lemma,

∫ 𝑚
𝑥 𝑅(𝑡)𝑑𝑡 ⩾ 𝑅(𝑥)

(
1 − 𝜎(𝜈)

)
(𝑚 − 𝑥). Since

∫
𝑥+ℎ

𝑚
𝑅(𝑡)𝑑𝑡 = 𝑚𝜈(𝑥 + ℎ −𝑚) ⩾ 𝑅(𝑥)(𝑥 + ℎ −𝑚),

we deduce

1

ℎ ∫
𝑥+ℎ

𝑥
𝑅(𝑡)𝑑𝑡 =

1

ℎ

(
∫

𝑚

𝑥
𝑅(𝑡)𝑑𝑡 + ∫

𝑥+ℎ

𝑚
𝑅(𝑡)𝑑𝑡

)
⩾ 𝑅(𝑥)

(
1 − 𝜎(𝜈)

)
.

It remains to consider the case 𝑥 < −𝑚 < 𝑥 + ℎ. In this case,

∫
−𝑚

𝑥
𝑅(𝑡)𝑑𝑡 = 𝑅(𝑥)(−𝑚 − 𝑥)

and

1

ℎ ∫
𝑥+ℎ

𝑥
𝑅(𝑡)𝑑𝑡 =

1

ℎ

(
∫

−𝑚

𝑥
𝑅(𝑡)𝑑𝑡 + ∫

𝑥+ℎ

−𝑚
𝑅(𝑡)𝑑𝑡

)
⩾ 𝑅(𝑥)(1 − 𝜎(𝜈))

since, according to the previous case,

∫
𝑥+ℎ

−𝑚
𝑅(𝑡)𝑑𝑡 ⩾ 𝑅(−𝑚)(1 − 𝜎(𝜈))(𝑥 + ℎ + 𝑚) = 𝑅(𝑥)(1 − 𝜎(𝜈))(𝑥 + ℎ + 𝑚).
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This proves the validity of (3.6) for the function 𝑅(𝑥) = min {𝑚𝜈, |𝑥|𝜈}. The general case for arbi-
trary values of the parameters 𝑑 ∈ ℝ and 𝜀 > 0 in (3.5) easily follows by translation and a standard
argument. □

We shall also need the following refinement of Lemma 3.1.

Lemma 3.6. Let 𝐶 be any compact subset of [0,1] which is homeomorphic to the Cantor set Δ ∶=

{0, 1}ℕ. Then there exists a continuous curve 𝛾 ∶ [0, 1] → ℝ2, such that

𝛾
(
[0, 1]

)
= 𝛾(𝐶) = 𝕋+ (see (3.1)).

Proof. Let 𝜑 be a homeomorphism from 𝐶 onto {0, 1}ℕ and let 𝜓 ∶ {0, 1}ℕ → [0, 1] be defined as
follows:

𝜓
(
(𝑥𝑛)

)
=

∑
𝑛⩾1

2−𝑛𝑥𝑛.

It follows easily that 𝜓 is continuous and surjective, therefore, 𝛾2 ∶= 𝜓 ◦𝜑 is a continuous func-
tion from 𝐶 onto [0,1]. By Urysohn lemma, we can extend 𝛾2 to a continuous curve �̃�2 from [0,1]
onto [0,1]. If 𝛾1 denotes the function constructed in Lemma 3.1, then the continuous curve
𝛾 ∶= 𝛾1 ◦ �̃�2 satisfies the assertion. □

We are now ready to construct the desired function 𝑓.

Theorem 3.7 (smooth exhaustive function in ℝ). There exists a 1-Lipschitz differentiable function
𝑓 ∶ ℝ → ℝwith compact support for which the range of its Clarke subdifferential contains all closed
subintervals and all singletons of [−1, 1].

Proof. Let = {𝑑𝑛}𝑛⩾1 be a countable dense subset of [0,1]. Let {𝜀𝑛}𝑛 be a nonincreasing sequence
of positive real numbers such that

∑
𝑛⩾1

𝜀𝑛 < 1∕2. Let {𝜈𝑛}𝑛 be a sequence in (0,1) such that∑
𝑛⩾1

𝜎(𝜈𝑛) < +∞, where 𝜎 is the function defined by (3.4) and evoked in Lemma 3.5. Let 𝑟𝑛 be

the function defined by

𝑟𝑛(𝑥) ∶=
(|𝑥 − 𝑑𝑛|

𝜀𝑛

)𝜈𝑛
, 𝑥 ∈ ℝ. (3.7)

According to our choice of 𝜀, the set

𝐹 ∶= [0, 1]⟍
(⋃
𝑑∈

(𝑑𝑛 − 𝜀𝑛, 𝑑𝑛 + 𝜀𝑛)

)

is a closed subset of [0,1] of positive Lebesgue measure. Since 𝐹 is an uncountable Polish space,
there exists a closed subset 𝐶 of 𝐹 which is homeomorphic to the Cantor set Δ = {0, 1}ℕ (see [18,
Corollary 6.5], for example). Notice also that

𝑟𝑛(𝑥) ⩾ 1, for all 𝑥 ∈ 𝐹 and 𝑛 ∈ ℕ.
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We are now ready to construct our function 𝑓. Let

𝛾(𝑥) =
(
𝛼(𝑥), 𝛽(𝑥)

)
∈ 𝕋+, 𝑥 ∈ [0, 1],

be the continuous curve constructed in Lemma 3.6 with respect to the closed subset𝐶 of 𝐹 evoked
above. We set

g0(𝑥) = 𝛽(𝑥)

and define inductively

g𝑛(𝑥) = min
{
g𝑛−1(𝑥), 𝛼(𝑥) + 𝑟𝑛(𝑥)

}
, for 𝑛 ⩾ 1.

Finally, we set

g(𝑥) = inf
𝑛⩾1

g𝑛(𝑥) = min
{
𝛽(𝑥), 𝛼(𝑥) + inf

𝑛⩾1
𝑟𝑛(𝑥)

}
and 𝑓(𝑥) = ∫

𝑥

0
g(𝑡)𝑑𝑡. (3.8)

Notice that the function g is upper semicontinuous (as infimum of continuous functions), hence
measurable, with values in [0,1] because 𝛼 ⩽ g ⩽ 𝛽. Therefore, the function 𝑓 is 1-Lipschitz and
nondecreasing. By construction, we have

g(𝑥) − 𝛼(𝑥) ⩽ 𝑟𝑛(𝑥), for every 𝑥 ∈ [0, 1] and 𝑛 ⩾ 1.

Let us fix 𝑥 ∈ [0, 1] and define

𝑅𝑛(𝑡) ∶= min{g(𝑥) − 𝛼(𝑥), 𝑟𝑛(𝑡)}, for all 𝑡 ∈ [0, 1].

It follows readily that 𝑅𝑛(𝑥) = g(𝑥) − 𝛼(𝑥), thus 0 ⩽ 𝑅𝑛(𝑥) ⩽ 𝛽(𝑥) ⩽ 1. Since

max{0, g(𝑥) − 𝛼(𝑥) − 𝑟𝑛(𝑡)} = 𝑅𝑛(𝑥) − 𝑅𝑛(𝑡),

we obtain from (3.5)–(3.6) with 𝑑 = 𝑑𝑛, 𝜈 = 𝜈𝑛, and𝑚 =
(
g(𝑥) − 𝛼(𝑥)

)1∕𝜈𝑛
1

ℎ ∫
𝑥+ℎ

𝑥
max{0, g(𝑥) − 𝛼(𝑥) − 𝑟𝑛(𝑡)}𝑑𝑡 = 𝑅𝑛(𝑥) −

1

ℎ ∫
𝑥+ℎ

𝑥
𝑅𝑛(𝑡)𝑑𝑡 ⩽ 𝑅𝑛(𝑥)𝜎(𝜈𝑛) ⩽ 𝜎(𝜈𝑛). (3.9)

□

Claim 1. The function 𝑓 is differentiable at every point and 𝑓′ = g .

Proof of Claim 1. We shall consider separately two cases:
— Case g(𝑥) = 𝛼(𝑥).
Since g ⩾ 𝛼, g(𝑥) = 𝛼(𝑥), g is upper semicontinuous, and 𝛼 is continuous, we deduce that g is

continuous at 𝑥, and consequently 𝑓 is differentiable at 𝑥 with 𝑓′(𝑥) = g(𝑥). Notice that the level
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set

[g − 𝛼 = 0] ∶= {𝑥 ∈ [0, 1] ∶ g(𝑥) = 𝑎(𝑥)}

of the function g − 𝛼 is dense 𝛿 in [0,1]: indeed, it contains the dense set = {𝑑𝑛}𝑛⩾1 (notice that
𝑟𝑛(𝑑𝑛) = 0 and consequently, by (3.8), g(𝑑𝑛) = 𝛼(𝑑𝑛), for every 𝑛 ⩾ 1) and it is 𝛿 since the strict
sublevel sets [

g − 𝛼 <
1

𝑛

]
=

{
𝑥 ∈ [0, 1] ∶ g(𝑥) − 𝛼(𝑥) <

1

𝑛

}
are open (thanks to the upper semicontinuity of g and the continuity of 𝛼) and

[g − 𝛼 = 0] =
⋂
𝑛⩾1

[g − 𝛼 < 1∕𝑛].

—Case g(𝑥) > 𝛼(𝑥).
Since g is upper semicontinuous, we always have

lim sup
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
= lim sup

ℎ→0

1

ℎ ∫
𝑥+ℎ

𝑥
g(𝑡)𝑑𝑡 ⩽ g(𝑥).

It remains to prove that for fixed 𝜀 > 0, there exists ℎ1 > 0 such that, if |ℎ| ⩽ ℎ1, then

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
⩾ g(𝑥) − 5𝜀. (3.10)

Without loss of generality, we may assume

𝜅 ∶= g(𝑥) − 𝛼(𝑥) − 𝜀 > 0.

Thus, for any 𝑛 ∈ ℕ, 𝑥 does not belong to the closed set 𝑟−1𝑛
(
{𝜅}

)
, which yields that

dist
(
𝑥, 𝑟−1𝑛

(
{𝜅}

))
= dist

(
𝑥, 𝑟−1𝑛 ([0, 𝜅])

)
> 0.

Moreover, up to a subsequence,

dist
(
𝑥, 𝑟−1𝑛

(
{𝜅}

))
⟶
𝑛→+∞

0.

Therefore, setting

𝑁(𝑥, ℎ) ∶= min
{
𝑛 ⩾ 1 ∶ 𝑟−1𝑛

(
{𝜅}

)
∩ [𝑥 − ℎ, 𝑥 + ℎ] ≠ ∅

}
, for ℎ > 0,

we deduce easily that

lim
ℎ→0

𝑁(𝑥, ℎ) = +∞.
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 13 of 27

Let us fix ℎ0 > 0 such that 𝑁 ∶= 𝑁(𝑥, ℎ0) satisfies both∑
𝑛>𝑁

𝜎(𝜈𝑛) < 𝜀 and |g𝑁(𝑥) − g(𝑥)| < 𝜀.

Then, we fix 0 < ℎ1 ⩽ ℎ0 such that, if 𝑡 ∈ [𝑥 − ℎ1, 𝑥 + ℎ1], then

|g𝑁(𝑥) − g𝑁(𝑡)| ⩽ 𝜀 and |𝛼(𝑥) − 𝛼(𝑡)| ⩽ 𝜀.

Consequently, if |ℎ| ⩽ ℎ1, we have

1

ℎ ∫
𝑥+ℎ

𝑥
g𝑁(𝑡)𝑑𝑡 ⩾ g𝑁(𝑥) − 𝜀 ⩾ g(𝑥) − 𝜀.

Therefore, in order to prove (3.10), it is enough to prove that

1

ℎ ∫
𝑥+ℎ

𝑥

(
g𝑁(𝑡) − g(𝑡)

)
𝑑𝑡 ⩽ 4𝜀, whenever |ℎ| ⩽ ℎ1.

Since g(𝑡) = min
{
g𝑁(𝑡), 𝛼(𝑡) + inf

𝑛>𝑁
𝑟𝑛(𝑡)

}
, we obtain

g𝑁(𝑡) − g(𝑡) = max

{
0, sup

𝑛>𝑁
{g𝑁(𝑡) − 𝛼(𝑡) − 𝑟𝑛(𝑡)}

}
.

If |𝑡 − 𝑥| ⩽ ℎ1, then we also have g𝑁(𝑡) − 𝛼(𝑡) ⩽ g(𝑥) − 𝛼(𝑥) + 3𝜀. Hence,

g𝑁(𝑡) − g(𝑡) ⩽ max

{
0, sup

𝑛>𝑁
{g(𝑥) − 𝛼(𝑥) + 3𝜀 − 𝑟𝑛(𝑡)}

}
⩽ max

{
0, sup

𝑛>𝑁
{g(𝑥) − 𝛼(𝑥) − 𝑟𝑛(𝑡)}

}
+ 3𝜀

⩽
∑
𝑛>𝑁

max {0, {g(𝑥) − 𝛼(𝑥) − 𝑟𝑛(𝑡)}} + 3𝜀.

Integrating the above inequality, we obtain thanks to (3.9)

1

ℎ ∫
𝑥+ℎ

𝑥

(
g𝑁(𝑡) − g(𝑡)

)
𝑑𝑡 ⩽

∑
𝑛>𝑁

1

ℎ ∫
𝑥+ℎ

𝑥
max {0, g(𝑥) − 𝛼(𝑥) − 𝑟𝑛(𝑡)}𝑑𝑡 + 3𝜀

⩽
∑
𝑛>𝑁

𝜎(𝜈𝑛) + 3𝜀 ⩽ 4𝜀.

(3.11)

Thus, we have shown that 𝑓 is differentiable at each point and that 𝑓′ = g . □

Claim 2. Im(𝜕𝑓) = 𝜕𝑓((0, 1)) = (0,1) ∶=
{
[𝑎, 𝑏] ∶ 0 ⩽ 𝑎 ⩽ 𝑏 ⩽ 1

}
.
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14 of 27 DANIILIDIS et al.

Proof of Claim 2. For every 𝑥 ∈ (0, 1), we have 0 ⩽ 𝑓′(𝑥) = g(𝑥) ⩽ 1, whence 𝜕𝑓(𝑥) ⊂ [0, 1]. Let
us now fix 𝑥 ∈ 𝐶. Since 𝐶 ⊂ 𝐹, we have 𝑟𝑛(𝑥) ⩾ 1 for all 𝑛 ⩾ 1 and consequently

𝑓′(𝑥) = g(𝑥) = 𝛽(𝑥) ∈ 𝜕𝑓(𝑥).

Since the set [𝑓′ = 𝛼] = [g = 𝛼] is dense in [0,1] and 𝛼 is continuous, we deduce that 𝛼(𝑥) ∈
𝜕𝑓(𝑥), hence [𝛼(𝑥), 𝛽(𝑥)] ⊂ 𝜕𝑓(𝑥). The reverse inclusion follows easily from (1.3), since 𝑓′(𝑥) =
g(𝑥) ∈ [𝛼(𝑥), 𝛽(𝑥)] and the functions 𝛼 and 𝛽 are continuous.
Let us finally recall that the curve 𝛾 = (𝛼, 𝛽) satisfies the conclusion of Lemma 3.6. This ensures

that

𝜕𝑓(𝐶) =
{
[𝑎, 𝑏] ∶ 0 ⩽ 𝑎 ⩽ 𝑏 ⩽ 1

}
.

We conclude that 𝜕𝑓((0, 1)) = 𝜕𝑓(𝐶) = [0,1] as asserted.
Replacing again 𝑓 by 𝑓 ∶= 2𝑓 − 𝐼, where 𝐼 is the identity on [0,1], we obtain a differentiable

function 𝑓 with derivatives in [−1, 1]. It easily follows that 𝑓 is 1-Lipschitz and satisfies

𝜕𝑓((0, 1)) = [−1,1] =
{
[𝑎, 𝑏] ∶ −1 ⩽ 𝑎 ⩽ 𝑏 ⩽ 1

}
.

The proof is complete. □

Remark 3.8.

(i) In the above construction, 𝜕𝑓(𝑥) is a singleton if and only if 𝑥 belongs to the (𝛿 dense) subset
[g = 𝛼] of [0,1]. Moreover, since g = 𝑓′ has the Darboux property, we can easily deduce that
𝜕𝑓(𝑥) = 𝜕𝐿𝑓(𝑥), for all 𝑥 ∈ (0, 1) and consequently, the conclusion also holds for the limiting
subdifferential.

(ii) We can assume that 𝐶 is contained in (0,1) and that 𝛼(0) = 𝛽(0) = 𝛼(1) = 𝛽(1) = 0. This
allows to extend 𝑓 to a differentiable function on ℝ satisfying 𝑓′(0) = 𝑓′(1) = 0.

(iii) We can also assume 1(𝐶) = 0. In this case, we have a negligible set 𝐶 satisfying

𝜕𝑓(𝐶) ∶= {𝜕𝑓(𝑥) ∶ 𝑥 ∈ 𝐶} = [−1,1].

(iv) It is clear from the above construction that the domain of 𝑓 can be any nontrivial interval of
arbitrarily small length and that the range of𝑓 can be taken inside [𝑐 − 𝜀, 𝑐 + 𝜀] for any choice
of 𝑐 ∈ ℝ and 𝜀 > 0. It follows easily, by a standard argument, that for any nonempty open
interval  of ℝ, the set of bounded, differentiable, Clarke exhaustive 𝑘-Lipschitz functions
in  is 𝑑∞-dense in the (complete) metric space

(
Lip[𝑘]( ), 𝑑∞

)
of all bounded Lipschitz

functions in  with ‖𝑓‖Lip ⩽ 𝑘.
(v) Let 𝐼 = (𝑎, 𝑏) be a nonempty (possibly unbounded) interval. Then the set  of all real-

valued Lipschitz functions in 𝐼 which are everywhere differentiable and Clarke exhaustive is
spaceable when equipped with the semidistance 𝑑Lip(𝑓, g) ∶= ‖𝑓 − g‖Lip, for all 𝑓, g in  .
Indeed, it is sufficient to consider a sequence of disjoint intervals {(𝑎𝑛, 𝑏𝑛)}𝑛 such that

𝑎 < 𝑎𝑛 < 𝑏𝑛 < 𝑎𝑛+1 < 𝑏 , for every 𝑛 ∈ ℕ ,
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 15 of 27

a sequence ofClarke exhaustive functions {𝑓𝑛}𝑛 such that ‖𝑓𝑛‖Lip = 1 and supp𝑓𝑛 ⊂ (𝑎𝑛, 𝑏𝑛)

for all 𝑛 ∈ ℕ, and the operator 𝑇 ∶ 𝑐0(ℕ) →  defined by

𝑇({𝑥𝑛}𝑛) ∶=

∞∑
𝑛=1

𝑥𝑛𝑓𝑛(⋅).

Since the supports of the functions 𝑓𝑛 are pairwise disjoint, it follows easily that the operator
𝑇 iswell defined and establishes a linear isometry between 𝑐0(ℕ) and its image. Therefore, the
metric space ( , 𝑑Lip) contains an isometric copy of 𝑐0(ℕ). Similar constructions of operators
𝑇 can be found in [2, 14].

(vi) The set of all Lipschitz functions in [0,1] which are everywhere differentiable and Clarke
exhaustive cannot be ‖ ⋅ ‖∞-spaceable in (Lip([0, 1]), ‖ ⋅ ‖∞) (the latter being seen as a dense
subspace of the Banach space (([0, 1], ‖ ⋅ ‖∞)). This is a straightforward consequence of the
classical fact that every subspace 𝑌 of Lipschitz functions which is ‖ ⋅ ‖∞-closed in ([0, 1])
is necessarily finite dimensional. Let us sketch a proof for reader’s convenience: We consider
the family of linear operators {𝑇𝑥,𝑦 ∶ 𝑥, 𝑦 ∈ [0, 1], 𝑥 ≠ 𝑦} defined by 𝑇𝑥,𝑦(𝑓) =

𝑓(𝑥)−𝑓(𝑦)|𝑥−𝑦| , for
all 𝑓 ∈ 𝑌 ⊂ Lip([0, 1]). Since 𝑇𝑥,𝑦(𝑓) ⩽ ||𝑓||Lip for all 𝑥, 𝑦 ∈ [0, 1], 𝑥 ≠ 𝑦, and (𝑌, ‖ ⋅ ‖∞) is
complete, applying the Banach–Steinhaus theorem, we deduce that for some𝑀 > 0 and all
𝑥, 𝑦 ∈ [0, 1], 𝑥 ≠ 𝑦, it holds ||𝑇𝑥,𝑦|| ⩽ 𝑀. It follows from Arzelà–Ascoli theorem that every|| ⋅ ||∞-bounded sequence {𝑓𝑛}𝑛 in 𝑌 has a converging subsequence, and consequently, the
closed unit ball 𝐵𝑌(0, 1) of 𝑌 is compact, ensuring that 𝑌 is finite dimensional.

3.2 Subdifferential containing all convex bodies in ℝ𝑵 (𝑵 ⩾ 𝟐)

We shall now deal with the higher dimensional case and construct a differentiable Lipschitz func-
tion 𝑓 which is almost exhaustive, that is, its Clarke subdifferential contains all nonempty convex
compact subsets of 𝐵(0, ‖𝑓‖Lip) of nonempty interior. The question of whether it is possible to
obtain a Lipschitz Clarke exhaustive function in dimension 𝑁 ⩾ 2 remains open.
Let us stress the fact that the forthcoming construction cannot be applied in one dimension.

Roughly speaking, our approach occupies one dimension to code the family of convex bodies in
𝐵(0, ‖𝑓‖Lip) (based on the fact that any compact geodesic metric space can be represented as a
continuous surjective image of [0,1]) and requires at least one extra dimension tomake an efficient
use of this coding. Although the overall construction is less explicit andmore involved, the reader
can possibly trace some analogies between the aforementioned surjection and the curve obtained
in Lemma 3.1 which was used to recover all closed intervals in [0,1].
In order to keep notation simple, ℝ𝑁 will be considered with its natural Euclidean structure

(despite the fact that our results Lemma 3.9 and Theorem 3.12 hold true in any finite-dimensional
normed space). Therefore, byRiesz representation theorem, the dual space ofℝ𝑁 will be identified
to itself. We shall also identify 1-forms𝐷𝑓(𝑥)with gradients∇𝑓(𝑥), for any differentiable function
𝑓 ∶ ℝ𝑁 → ℝ. In what follows we are going to construct the following:

(I) for every 𝑛 ⩾ 1, a compactly supported differentiable 𝑛-Lipschitz function 𝑓𝑛 ∶ ℝ𝑁 → ℝ

whose Clarke subdifferential contains in its range every compact convex subset of nonempty
interior that lies in the closed ball 𝐵(0, 𝑛).
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16 of 27 DANIILIDIS et al.

Similarly to the one-dimensional case, the method of construction will directly yield that the
set of all functions as above is 𝑑∞-dense in (Lip( ), ‖ ⋅ ‖∞) (for ⊂ ℝ𝑁 open and bounded) and‖ ⋅ ‖L-spaceable in (Lip( ), ‖ ⋅ ‖L).
(II) a differentiable locally Lipschitz function 𝑓 ∶ ℝ𝑁 → ℝwhose Clarke subdifferential contains

in its range all compact convex bodies of ℝ𝑁 .

Notice that the second assertion follows directly from the first: It is enough to consider a family
of differentiable Lipschitz functions 𝑓𝑛 ∶ ℝ𝑁 → ℝ with Lip(𝑓𝑛) = 𝑛 and disjoint supports (for
instance, supp(𝑓𝑛) ⊂ 𝐵(3𝑛 𝑒1, 1) where 𝑒1 = (1, 0, … , 0)), satisfying statement (I) and define the
function

𝑓(𝑥) =
∑
𝑛⩾1

𝑓𝑛(𝑥), for all 𝑥 ∈ ℝ𝑁. (3.12)

One readily gets that 𝑓 is everywhere differentiable, locally Lipschitz, and satisfies assertion (II).
Let us now proceed to the construction evoked in (I). It clearly suffices to do it for the case 𝑛 = 1

and construct a 1-Lipschitz function.
This will be done in two stages: We first fix a compact convex subset 𝐶 in ℝ𝑁 that contains 0

and construct an 𝐿-Lipschitz function (with 𝐶 ⊂ 𝐵(0, 𝐿)) whose Clarke subdifferential contains
all compact convex subsets 𝐾 of 𝐶 that contain 0. The general case will follow using separability
arguments, by considering an adequate sequence {𝐶𝑛}𝑛 of compact convex sets with 0 ∈ int 𝐶𝑛,
then gluing adequate translations of the corresponding constructed functions.

3.2.1 An intermediate construction

For a nonempty compact convex subset 𝐶 of ℝ𝑁 with 0 ∈ 𝐶, recalling from (2.3)–(2.2) the
definition of (𝐶, 𝐷H), we denote by

0
𝐶
∶= {𝐾 ∈ 𝐶 ∶ 0 ∈ 𝐾} (3.13)

the set of all convex compact subsets of 𝐶 containing 0. Notice that0
𝐶
is closed in𝐶 , therefore

(0
𝐶
, 𝐷H) is a compact metric space. Moreover, it is a geodesic space (see [23, p. 72], for example).

Indeed, for any two elements 𝐾0, 𝐾1 ∈ 0
𝐶
and 𝜆 ∈ (0, 1), we have:

𝐾𝜆 ∶= (1 − 𝜆)𝐾0 + 𝜆𝐾1 ∈ 0
𝐶

and 𝐷H(𝐾0, 𝐾𝜆) = 𝜆𝐷H(𝐾0, 𝐾1). (3.14)

We shall show, as an application of the next lemma, that there exists a differentiable 1-Lipschitz
function 𝑓 ∶ ℝ𝑁 → ℝ such that0

𝐵(0,1)
is contained in the image of the subdifferential of 𝑓.

Lemma 3.9. Let 𝐶 ⊂ ℝ𝑁 be a convex compact set such that 0 ∈ 𝐶 and 𝐿 ∶= max
𝑥∈𝐶

{‖𝑥‖}. Then:
(i) There is a differentiable 𝐿-Lipschitz continuous and compactly supported function 𝑓 ∶ ℝ𝑁 → ℝ

such that:

for every 𝐾 ∈ 0
𝐶
, there exists 𝑥 ∈ ℝ𝑁 such that 𝜕𝑓(𝑥) = 𝐾. (3.15)
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 17 of 27

(ii) Let us further assume 0 ∈ int(𝐶). Then in addition to (3.15) we get:

𝜕𝑓(𝑥) ⊂ 𝐶, for all 𝑥 ∈ ℝ𝑁. (3.16)

Proof.

(i) If 𝐶 = {0}, then the function 𝑓 ≡ 0 satisfies trivially the conclusion. Therefore, we may
assume {0} ⊊ 𝐶. Since

(0
𝐶
, 𝐷H

)
is a compact metric space, there exists a continuous surjec-

tive map from the Cantor set Δ to 0
𝐶
(see [18, Theorem 4.18]). Since 0

𝐶
is also geodesic,

a standard argument shows that this map can be extended to a continuous surjective
map

ℎ ∶ [0, 1] → 0
𝐶

(coding the elements of0
𝐶
).

Let

 = {𝑑𝑛 ∶ 𝑛 ∈ ℕ}

be a countable dense subset of (0,1).

Let us define, by induction, two sequences {𝛼𝑛}𝑛 and {𝜀𝑛}𝑛, satisfying 𝛼𝑛 > 𝜀𝑛 > 0, for all 𝑛 ⩾ 1,
satisfying

lim
𝑛→∞

𝛼𝑛 = lim
𝑛→∞

𝜀𝑛 = 0

and the following property: Setting

𝑄𝑛 = (𝑑𝑛, 𝛼𝑛, 0, … , 0) ∈ ℝ𝑁, where 𝑛 ∈ ℕ, (3.17)

the balls 𝐵(𝑄𝑛, 𝜀𝑛) are pairwise disjoint and contained in (0, 1)𝑁 .
Indeed, assuming that 𝛼1, … , 𝛼𝑛, 𝜀1, … , 𝜀𝑛 have already been constructed accordingly, pick

0 < 𝛼𝑛+1 < 𝑚𝑛 ∶= min{𝛼𝑖 − 𝜀𝑖; 1 ⩽ 𝑖 ⩽ 𝑛}

and then choose 0 < 𝜀𝑛+1 < 𝛼𝑛+1 such that 𝛼𝑛+1 + 𝜀𝑛+1 < 𝑚𝑛 and 𝜀𝑛+1 < min{𝑑𝑛+1, 1 − 𝑑𝑛+1}.
Notice that we can also assume the extra condition lim

𝑛→∞
𝜀𝑛∕𝛼𝑛 = 0 (which will be needed later). A

concrete choice of such sequences is given by 𝛼𝑛 = 1∕2𝑛, 𝜀𝑛 = 1∕𝑛2𝑛+2 and {𝑑𝑛}𝑛∈ℕ be a standard
enumeration of the dyadics in (0,1) given by 𝑑1 = 1∕2 and

𝑑𝑛 =
2 𝑖(𝑛) − 1

2𝑚(𝑛)+1
,

where for every 𝑛 ⩾ 2, we denote by𝑚(𝑛) the unique𝑚 ∈ {1,… , 𝑛} such that

𝑠𝑚 ∶=

𝑚−1∑
𝑘=0

2𝑘 < 𝑛 ⩽ 𝑠𝑚+1 ∶=

𝑚∑
𝑘=0

2𝑘
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18 of 27 DANIILIDIS et al.

F IGURE 1 Sketch of the function constructed in Lemma 3.9.

and we set 𝑖(𝑛) ∶= 𝑛 − 𝑠𝑚(𝑛) ∈ {1, … , 2𝑚(𝑛)−1}. Further, for every 𝑛 ∈ ℕ, we define

𝐻𝑛 ∶=
(
ℎ(𝑑𝑛) + 𝐵(0, 𝛾𝑛)

) ⋂
𝐵(0, 𝐿), (3.18)

where {𝛾𝑛}𝑛 is an arbitrary sequence of positive numbers converging to 0. Therefore, for every
𝑛 ∈ ℕ, we have

𝐵(0,min {𝛾𝑛, 𝐿}) ⊂ 𝐻𝑛 ⊂ ℎ(𝑑𝑛) + 𝐵(0, 𝛾𝑛). (3.19)

Since 𝐻𝑛 is a convex compact subset of ℝ𝑁 such that 0 ∈ int(𝐶), according to a consequence of
a result of J. Borwein, M. Fabian, I. Kortezov, and P. Loewen [5, Theorem 12] (see also T. Gas-
pari [17]), for every 𝑛 ∈ ℕ, there exists a 1-smooth function 𝑏𝑛 ∶ ℝ𝑁 → ℝ, with support in the
unit ball, such that ∇𝑏𝑛(ℝ𝑁) = 𝐻𝑛 and ‖𝑏𝑛‖∞ ⩽ 1. We set

𝜙𝑛(𝑥) ∶= 𝜀𝑛 ⋅ 𝑏𝑛
(𝑥 − 𝑄𝑛

𝜀𝑛

)
(3.20)

and observe that 𝜙𝑛 is 𝐿-Lipschitz and satisfies:

‖𝜙𝑛‖∞ ⩽ 𝜀𝑛 and supp(𝜙𝑛) ⊂ 𝐵(𝑄𝑛, 𝜀𝑛).

It follows that the elements of the family  = {supp(𝜙𝑛) ∶ 𝑛 ∈ ℕ} are pairwise disjoint and
contained in [0, 1]𝑁 (see Figure 1). Moreover, for any 𝑥 ∈ ℝ𝑁 and 𝑛 ∈ ℕ, we have

∇𝜙𝑛
(
𝐵(𝑄𝑛, 𝜀𝑛)

)
= 𝐻𝑛. (3.21)

Notice further that if 𝑥 ∉ ℝ × {0}𝑁−1, then 𝐵(𝑥, 𝛿) intersects at most one element of the family 
for 𝛿 > 0 sufficiently small.
We are ready to define the function 𝑓 that satisfies our assertion:

⎧⎪⎨⎪⎩
𝑓 ∶ ℝ𝑁 → ℝ

𝑓(𝑥) =
∞∑
𝑛=1

𝜙𝑛(𝑥).
(3.22)
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 19 of 27

Since supp(𝑓) ⊂ [0, 1]𝑁 , the function 𝑓 is compactly supported. It follows easily that 𝑓 is 𝐿-
Lipschitz and coincides with 𝜙𝑛 in a neighborhood of 𝑄𝑛. Therefore, 𝜕𝑓(𝑥) ⊂ 𝐵(0, 𝐿), for all
𝑥 ∈ ℝ𝑁 . Moreover, since ‖𝜙𝑛‖∞ ⟶

𝑛→∞
0, 𝑓 vanishes and is continuous on ℝ × {0}𝑁−1. The next

claim yields directly (3.15). □

Claim 1. For every 𝐾 ∈ 0
𝐶
there exists 𝑥 ∈ [0, 1] × {0}𝑁−1 with 𝜕𝑓(𝑥) = 𝐾.

Proof of the Claim 1. Fix 𝐾 ∈ 0
𝐶
and pick any �̂� ∈ [0, 1] such that ℎ(̂𝑡) = 𝐾. Set

�̂� = (𝑡, 0, … , 0) ∈ [0, 1] × {0}𝑁−1.

We first show 𝐾 ⊂ 𝜕𝑓(�̂�). Indeed, by continuity of the function ℎ we have

lim
𝑡→�̂�

𝐷𝐻(ℎ(𝑡), 𝐾) = 0.

Take a sequence 𝑑𝑘(𝑛) ∈  converging to �̂� so that 𝑥 = lim𝑛→∞ 𝑄𝑘(𝑛). Recalling (3.19) we deduce
that:

lim
𝑛→∞

𝐻𝑘(𝑛) = 𝐾. (3.23)

Thus, if 𝑝 ∈ 𝐾, there exist points 𝑥𝑛 ∈ 𝐵(𝑄𝑘(𝑛), 𝜀𝑛), 𝑛 ⩾ 1, such that the sequence
{
∇𝑓(𝑥𝑛)

}
𝑛

converges to 𝑝. Since 𝑥 = lim𝑛→∞ 𝑥𝑛, we obtain 𝑝 ∈ 𝜕𝑓(𝑥). This proves that 𝐾 ⊂ 𝜕𝑓(𝑥).
Let us now prove 𝜕𝑓(�̂�) ⊂ 𝐾. Fix 𝜀 > 0. Since ℎ is continuous, there exists 𝛿 > 0 such that

ℎ(𝑡) ⊂ 𝐾 + 𝐵(0, 𝜀∕2), for all 𝑡 ∈ (̂𝑡 − 𝛿, �̂� + 𝛿) ∩ [0, 1]. (3.24)

For 𝜌 > 0 sufficiently small (the exact value of 𝜌 will be fixed later), we set:

𝜌 ∶=

[
(̂𝑡 −

𝛿

2
, �̂� +

𝛿

2
) × (−𝜌, 𝜌)𝑁−1

]
⧵
[
{0} × ℝ𝑁−1

]
.

Since for every 𝑥 ∈ 𝜌 there is at most one 𝑛 ∈ ℕ such that 𝑥 ∈ supp(𝜙𝑛), it follows that either
∇𝑓(𝑥) = 0 (if 𝑥 does not belong to any element of the family ) or in view of (3.21),

∇𝑓(𝑥) = ∇𝜙𝑛(𝑥) ∈ 𝐻𝑛.

In this latter case, since 𝑑𝑛 ∈ (̂𝑡 − 𝛿, �̂� + 𝛿) it follows from (3.24) and (3.18) that

∇𝑓(𝑥) ∈ 𝐻𝑛 ⊂ ℎ(𝑑𝑛) + 𝐵(0, 𝛾𝑛) ⊂
(
𝐾 + 𝐵(0,

𝜀

2
)
)
+ 𝐵(0, 𝛾𝑛).

We can take 𝜌 > 0 sufficiently small to ensure that 𝛾𝑛 < 𝜀∕2, whenever supp(𝜙𝑛) ∩𝜌 ≠ ∅.
Choosing 𝜌 > 0 in this way, we infer that

𝜕𝑓(𝑥) ⊂ 𝐾 + 𝐵(0, 𝜀), for all 𝑥 ∈ 𝜌.
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20 of 27 DANIILIDIS et al.

Since the set ∶= {0} × ℝ𝑁−1 is negligible for the Lebesgue measure, we deduce easily from the
formula (1.3) of the Clarke subdifferential that

𝜕𝑓(̂𝑡 × {0}𝑁−1) ⊂ 𝐾 + 𝐵(0, 𝜀).

Since 𝜀 > 0 can be chosen arbitrary small, we obtain the desired conclusion. □

Claim 2. The function 𝑓 is differentiable on ℝ𝑁 .

Proof of the Claim 2. Since the compact sets supp(𝜙𝑛) are disjoint subsetsℝ𝑁 and do not intersect
the closed subset [0, 1] × {0}𝑁−1 of ℝ𝑁 , the function 𝑓 is 1-smooth on ℝℕ ⧵

(
[0, 1] × {0}𝑁−1

)
.

Let us now treat the case where 𝑥 ∈ [0, 1] × {0}𝑁−1. In this case, 𝑓(𝑥) = 0. Take any 𝑦 ∈ ℝ𝑁 . If
the point 𝑦 does not belong to supp(𝜙𝑛) for any 𝑛, then 𝑓(𝑦) = 0, while if 𝑦 ∈ supp(𝜙𝑛) for some
𝑛 ∈ ℕ, thenwe deduce from (3.20) that |𝑓(𝑦) − 𝑓(𝑥)| = |𝑓(𝑦)| ⩽ 𝜀𝑛 ≪ ‖𝑦 − 𝑥‖ because ‖𝑦 − 𝑥‖ ⩾

𝛼𝑛 − 𝜀𝑛 and lim
𝑛→∞

𝜀𝑛∕𝛼𝑛 = 0. Since supp(𝜙𝑛) is compactly contained in (0, 1)ℕ, we conclude that 𝑓
is differentiable at 𝑥 and ∇𝑓(𝑥) = 0.
This completes the proof of (i).
(ii) We now assume that there exists 𝜆 > 0 such that 𝐵(0, 𝜆) ⊂ 𝐶. To construct a function 𝑓 that

satisfies (3.15)–(3.16), we replace the definition of𝐻𝑛 in (3.18) by

𝐻𝑛 ∶=
(
ℎ(𝑑𝑛) + 𝐵(0, 𝛾𝑛)

)
∩ 𝐶,

and we proceed as before. It follows easily that 𝜕𝑓(𝑥) ⊂ 𝐶 ⊂ 𝐵(0, 𝐿), for all 𝑥 ∈ ℝ𝑁 (in particular
𝑓 is 𝐿-Lipschitz) and (3.15) follows as in (i). □

Remark 3.10.

(i) A more elementary (and self-contained) proof of Lemma 3.9 can be provided if the assump-
tion of differentiability of 𝑓 is dropped. Indeed, following the lines of the above proof, once
the sets𝐻𝑛 in (3.18) are defined, we can consider the functions 𝑏𝑛 ∶ ℝ𝑁 → ℝ defined by

𝑏𝑛(𝑥) ∶= min{0, sup
𝑝∈𝐻𝑛

⟨𝑝, 𝑥⟩ − 𝑐𝑛},

where 𝑐𝑛 > 0 is chosen such that supp(𝑏𝑛) ⊂ 𝐵(0, 1) and ‖𝑏𝑛‖∞ ⩽ 1. Note that, in a neigh-
borhood of 0, the function 𝑏𝑛 + 𝑐𝑛 is the support function of 𝐻𝑛. The function 𝑏𝑛 is
nondifferentiable and 𝜕𝑏𝑛(𝑥) ⊂ 𝐻𝑛 = 𝜕𝑏𝑛(0) for all 𝑥 ∈ 𝑋. Then we define 𝜙𝑛 as in (3.20),
using the functions {𝑏𝑛 ∶ 𝑛 ∈ ℕ} (instead of 𝑏𝑛) and the function 𝑓 ∶ ℝ𝑁 → ℝ as in (3.22).
Proceeding as in the above proof and using the fact that the Clarke subdifferential 𝜕𝑓 is outer
semicontinuous and 𝜕𝑓(𝑄𝑛) = 𝐻𝑛 for all 𝑛 ∈ ℕ, we deduce that 𝜕𝑓((𝑡, 0, … 0)) = ℎ(𝑡), for any
𝑡 ∈ [0, 1].

(ii) We can also use this idea to construct an everywhere differentiable function satisfying
Lemma 3.9. Indeed, fixing a positive mollifier 𝜌 ∶ ℝ𝑁 → ℝ, we set 𝜌𝑛(⋅) ∶= 𝜈−𝑁𝑛 𝜌(⋅∕𝜈𝑛),
𝜈𝑛 ⩾ 1, and consider the convolution 𝑏∗𝑛 ∶= 𝑏𝑛 ∗ 𝜌𝑛. Then taking 𝜈𝑛 > 0 sufficiently small,
we ensure that 𝑏∗𝑛 is a good approximation of 𝑏𝑛, which becomes better and better as 𝜈 → 0.
(The interested reader is invited to work out the details of this construction.)
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CONVEX BODIES IN SUBDIFFERENTIALS OF LIPSCHITZ FUNCTIONS 21 of 27

(iii) A careful inspection of the proof of Lemma 3.9 reveals that one can work directly with the
continuous surjective map ℎ ∶ Δ ↦ 0

𝐶
by simply replacing [0,1] by Δ in the proof and by

taking a countable dense subset  of Δ ⧵ {0, 1}. The coding over Δ does not use the fact
that the space (0

𝐶
, 𝐷H) is a geodesic space. This remark will be particularly relevant in

Section 3.3.

3.2.2 Main result: recovering convex bodies

Based on Lemma 3.9 (which recovers all convex bodies containing 0), we can now deduce the
general case. We shall also need the following lemma.

Lemma 3.11. Let 𝑥∗ ∈ ℝ𝑁 be such that ‖𝑥∗‖ < 1. Then, there exists a continuously differentiable
and 1-Lipschitz function ℎ ∶ ℝ𝑁 → ℝ with support in the unit ball 𝐵(0, 1) and 𝛿 > 0 such that

∇ℎ(𝑥) = 𝑥∗(𝑥), for all 𝑥 ∈ 𝐵(0, 𝛿).

The proof of the above lemma is straightforward. It is sufficient to set 𝑥 ↦ 𝑥∗(𝑥) on a small ball
centered at 0, consider an affine interpolation outside this ball which brings to the value to 0, and
finally use a mollifier with a sufficiently small support.
We are now ready to state the main result of this section.

Theorem 3.12 (almost exhaustive function in ℝ𝑁). There exists a differentiable 1-Lipschitz com-
pactly supported function 𝑓 ∶ ℝ𝑁 → ℝ such that for every convex body 𝐾 of 𝐵(0, 1), there exists
𝑥 ∈ ℝ𝑁 such that 𝜕𝑓(𝑥) = 𝐾.

Proof. Let {𝑞∗𝑛}𝑛 ⊂ 𝐵(0, 1) be a dense sequence in 𝐵(0, 1). We claim that there exists a differen-
tiable, 1-Lipschitz, and compactly supported function g ∶ ℝ𝑁 → ℝ satisfying that for each 𝑛 ∈ ℕ,
there exists a set𝑛 ⊂ ℝ𝑁 with nonempty interior, such that

∇g(𝑥) = 𝑞∗𝑛 if 𝑥 ∈ 𝑛.

Let us present a quick construction of the function g . First, applying Lemma 3.11, for any 𝑛 ∈ ℕ,
there exists a continuously differentiable and 1-Lipschitz function g𝑛 ∶ ℝ𝑁 → ℝ with support in
the unit ball such that ∇g𝑛(𝑥) = 𝑞∗𝑛(𝑥), for all 𝑥 in a neighborhood of 0. Take any sequence {𝑥𝑛}𝑛
of distinct points of 𝐵(0, 1) that converges to some point 𝓁 of the open unit ball, with 𝓁 ≠ 𝑥𝑛, for
all 𝑛 ∈ ℕ. Choose further {𝜀𝑛}𝑛 ⊂ (0, 1) such that

{
𝐵(𝑥𝑛, 𝜀𝑛)

}
𝑛
is a sequence of disjoint closed balls

contained in 𝐵(0, 1). The required function g is defined by

g(𝑥) ∶=
∑
𝑛

𝜀𝑛g𝑛

(𝑥 − 𝑥𝑛
𝜀𝑛

)
.

The function g is the sum of disjointly supported functions, hence g is 1-Lipschitz, the support of
g is contained in the unit ball, ∇g(𝑥) = 𝑞∗𝑛 in a neighborhood 𝑛 of 𝑥𝑛, and g is differentiable at
every point 𝑥 ∈ ℝ𝑁 ⧵ {𝓁}.
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22 of 27 DANIILIDIS et al.

Let us now show that the function g is also differentiable at 𝓁, provided the sequence {𝜀𝑛}𝑛
satisfies

lim
𝑛→∞

𝜀𝑛‖𝑥𝑛 − 𝓁‖ = 0 (by shrinking the values of 𝜀𝑛 we can always guarantee this).

Indeed, for 𝑛 sufficiently large and for any 𝑥 ∈ 𝐵(𝑥𝑛, 𝜀𝑛), we have

g(𝑥) = 𝜀𝑛 g𝑛

(𝑥 − 𝑥𝑛
𝜀𝑛

)
⩽ 𝜀𝑛 and

g(𝑥) − g(𝓁)‖𝑥 − 𝓁‖ ⩽
𝜀𝑛‖𝑥 − 𝓁‖ ⩽

𝜀𝑛‖𝑥𝑛 − 𝓁‖
(‖𝑥𝑛 − 𝓁‖‖𝑥 − 𝓁‖

)
⏟⎴⎴⎴⏟⎴⎴⎴⏟

⩾1∕2

⟶
𝑛→∞

0 ,

yielding that g is differentiable at 𝓁 with ∇g(𝓁) = 0.
For each 𝑛 ∈ ℕ, let 𝑥𝑛 ∈ ℝ𝑁 and 𝜆𝑛 > 0 be such that 𝐵(𝑥𝑛, 𝜆𝑛) ⊂ int𝑛. Set 𝐶𝑛 ∶= 𝐵(−𝑞∗𝑛, 1)

and notice that 0 ∈ int 𝐶𝑛. Applying Lemma 3.9(ii) for 𝐶 = 𝐶𝑛, we obtain a differentiable
1-Lipschitz function 𝑓𝑛 ∶ ℝ𝑁 → ℝ satisfying (3.15)–(3.16). Up to a suitable re-scaling, namely
replacing 𝑓𝑛 by 𝛿𝑛𝑓𝑛(⋅∕𝛿𝑛), we can assume supp 𝑓𝑛 ⊂ int𝐵(0, 𝜆𝑛). We define the function

⎧⎪⎨⎪⎩
𝑓 ∶ ℝ𝑁 → ℝ

𝑓(𝑥) = g(𝑥) +
∞∑
𝑛=1

𝑓𝑛(𝑥 − 𝑥𝑛).

Notice that, for any 𝑥 ∈ ℝ𝑁 , there is at most one 𝑛 ∈ ℕ such that 𝑥 − 𝑥𝑛 ∈ supp 𝑓𝑛. Moreover,
for any 𝑛 ∈ ℕ and 𝑥 ∈ 𝑛, we deduce that

∇𝑓(𝑥) = 𝑞∗𝑛 + ∇𝑓𝑛(𝑥 − 𝑥𝑛) ∈ 𝐵(0, 1),

and if 𝑥 is not in any𝑛, then∇𝑓(𝑥) = ∇g(𝑥) ∈ 𝐵(0, 1). It follows easily that 𝑓 is 1-Lipschitz. Let
us now verify that 𝑓 satisfies the property asserted in the statement of the theorem. To this end, let
𝐾 ⊂ 𝐵(0, 1) be a convex compact set with nonempty interior. Since {𝑞∗𝑛}𝑛 is dense in 𝐵(0, 1), there
exists 𝑛 ∈ ℕ such that 𝑞∗𝑛 ∈ int𝐾. Therefore, 𝐾 − 𝑞∗𝑛 ⊂ 𝐵(−𝑞∗𝑛, 1) = 𝐶𝑛. From property (3.15) of
Lemma 3.9, there exists 𝑦 ∈ supp(𝑓𝑛) ⊂ 𝐵(0, 𝜆𝑛) such that 𝜕𝑓𝑛(𝑦) = 𝐾 − 𝑞∗𝑛. Recalling that 𝑥𝑛 ∈𝑛, setting 𝑥𝐾 ∶= 𝑦 + 𝑥𝑛 ∈ 𝐵(𝑥𝑛, 𝜆𝑛) ⊂ 𝑛, we obtain

𝜕𝑓(𝑥𝐾) = ∇g(𝑥𝐾) + 𝜕𝑓𝑛(𝑦) = 𝐾.

The proof is complete. □

Remark 3.13. A careful inspection of the proof of Theorem 3.12 reveals that for the constructed
function 𝑓 ∶ ℝ𝑁 → ℝ, the Clarke subdifferential 𝜕𝑓(𝑥) and the limiting subdifferential 𝜕𝐿𝑓(𝑥)
coincide at every point. Let us recall that the same situation occurred in Theorem 3.7, for the case
𝑁 = 1, based on the fact that differentiable real-valued functions on the real line have theDarboux
property (cf. Remark 3.8(i)). Consequently, the main results of this paper apply equally well for
the limiting subdifferential.
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3.3 Recovering compact connected sets with nonempty interior

In the current subsection, we refine the previous construction to obtain an everywhere dif-
ferentiable, compactly supported, 1-Lipschitz function 𝑓 ∶ ℝ𝑑 → ℝ such that its subdifferential
contains every closed connected subset of the unit ball with nonempty interior.
We shall work with the limiting subdifferential 𝜕𝐿𝑓 which at a given point 𝑥 ∈ ℝ𝑁 consists of

all accumulation points of sequences of derivatives {∇𝑓(𝑥𝑛)}𝑛⩾1 as 𝑥𝑛 → 𝑥. In strong contrast with
the case of strictly differentiable functions (where the only possible limit is∇𝑓(𝑥)), we show that
we can recover all compact connected sets (even completely irregular fractal-type sets) provided
they have nonempty interior.
To start, let 𝐶 be any convex compact set containing 0 and consider the set

̃0
𝐶
∶= {𝐾 ⊂ 𝐶 ∶ 𝐾 is compact connected and 0 ∈ 𝐾}. (3.25)

We first show that, similarly to0
𝐶
, the above set can also be coded on the Cantor set Δ ⊂ [0, 1].

Lemma 3.14. (̃0
𝐶
, 𝐷H) is a compact metric space (therefore, it can be seen as continuous surjective

image of the Cantor set Δ).

Proof. Let us first show that ̃0
𝐶
is closed in 0

𝐶
(see (2.1)) for the Hausdorff distance. To this

end, let {𝐾𝑛}𝑛 be a sequence in ̃0
𝐶
that converges to a compact set 𝐾 ∈ 0

𝐶
. It is straightforward

to see that 0 ∈ 𝐾⊂ 𝐶. If 𝐾 is not connected, then there would exist two nonempty disjoint open
subsets𝑈1 and𝑈2 inℝ𝑁 such that𝐾𝑖 = 𝐾 ∩ 𝑈𝑖 is nonempty, for 𝑖 ∈ {1, 2} and𝐾 = 𝐾1 ∪ 𝐾2. Then
the convergence 𝐷H(𝐾𝑛, 𝐾)⟶ 0 forces 𝐾𝑛 to be disconnected for 𝑛 sufficiently large, which is a
contradiction. This shows that (̃0

𝐶
, 𝐷H) is a compact metric space and there exists a continuous

surjective function ℎ that maps the Cantor set Δ onto ̃0
𝐶
(see [18, Theorem 4.18]). □

Based on Remark 3.10(iii), we can now refine the proof of Lemma 3.9 and enhance the conclu-
sion. This is done in the following lemma, whose proof follows closely the proof of Lemma 3.9.
We present a sketch of the proof, highlighting the main changes.
Beforewe proceed, let us recall that a closed set𝐶 ⊂ ℝ𝑑 is called strictly convex if for any two dis-

tinct points 𝑥, 𝑦 ∈ 𝐶, the open segment (𝑥, 𝑦) joining 𝑥 and 𝑦 lies in the interior of𝐶. (In particular,
a strictly convex set is either singleton or has nonempty interior.)

Lemma 3.15. Let 𝐶 ⊂ ℝ𝑁 be a convex compact set such that 0 ∈ 𝐶 and 𝐿 ∶= max
𝑥∈𝐶

{‖𝑥‖}. Then:
(i) There is a differentiable 𝐿-Lipschitz continuous and compactly supported function 𝑓 ∶ ℝ𝑁 → ℝ

such that:

for every 𝐾 ∈ ̃0
𝐶
, there exists 𝑥 ∈ ℝ𝑁 such that 𝜕𝐿𝑓(𝑥) = 𝐾. (3.26)

(ii) Let us further assume 0 ∈ int(𝐶) and 𝐶 is strictly convex. Then in addition to the above
conclusion we get:

𝜕𝐿𝑓(𝑥) ⊂ 𝐶, for all 𝑥 ∈ ℝ𝑁. (3.27)
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Proof (Sketch).

(i) Let ℎ ∶ Δ → ̃0
𝐶
be a continuous surjective map (which will be used to code the elements

of ̃0
𝐶
). Let  = {𝑑𝑛 ∶ 𝑛 ∈ ℕ} be a countable dense subset of Δ ⧵ {0, 1} and consider two

sequences {𝛼𝑛}𝑛 and {𝜀𝑛}𝑛 of positive real numbers as in the proof of Lemma 3.9. In particular,
we have 𝛼𝑛 > 𝜀𝑛 > 0, for all 𝑛 ⩾ 1, lim

𝑛→∞
𝛼𝑛 = 0, and lim

𝑛→∞
𝜀𝑛∕𝛼𝑛 = 0.

Define {𝑄𝑛}𝑛 by (3.17). Then, the sets {𝐵(𝑄𝑛, 𝜀𝑛)}𝑛 are pairwise disjoint and are contained
in [0, 1]𝑁 . Let {𝛾𝑛}𝑛 be an arbitrary sequence of positive numbers converging to 0. For every
𝑛 ∈ ℕ, since ℎ(𝑑𝑛) is totally bounded, there exists a finite 𝛾𝑛-net 𝐴𝑛 of ℎ(𝑑𝑛), containing 0,
that is,

0 ∈ 𝐴𝑛 ⊂ ℎ(𝑑𝑛) ⊂
⋃
𝑎∈𝐴𝑛

𝐵(𝑎, 𝛾𝑛).

We then define

�̃�𝑛 ∶=
(
𝐴𝑛 + 𝐵(0, 2𝛾𝑛)

) ⋂
𝐵(0, 𝐿) =

⋃
𝑎∈𝐴𝑛

𝐵(𝑎, 2𝛾𝑛) ∩ 𝐵(0, 𝐿). (3.28)

Notice that �̃�𝑛 is a finite union of strictly convex sets and 0 ∈ 𝐵 (0,min {2𝛾𝑛, 𝐿}). Moreover,
for every 𝑛 ∈ ℕ, we have

ℎ(𝑑𝑛) ⊂ int(�̃�𝑛) ⊂ ℎ(𝑑𝑛) + 𝐵(0, 2𝛾𝑛). (3.29)

Therefore, int(�̃�𝑛) is connected, therefore, according to [5, Theorem 8], for every 𝑛 ∈ ℕ, there
exists a 1-smooth function 𝑏𝑛 ∶ ℝ𝑁 → ℝ, with support in the unit ball, such that∇𝑏𝑛(ℝ𝑁) =

�̃�𝑛 and ‖𝑏𝑛‖∞ ⩽ 1. We set

𝜙𝑛(𝑥) ∶= 𝜀𝑛 ⋅ 𝑏𝑛
(𝑥 − 𝑄𝑛

𝜀𝑛

)
. (3.30)

We are ready to define the function 𝑓 that satisfies our assertion:

⎧⎪⎨⎪⎩
𝑓 ∶ ℝ𝑁 → ℝ

𝑓(𝑥) =
∞∑
𝑛=1

𝜙𝑛(𝑥).
(3.31)

Since supp(𝑓) ⊂ [0, 1]𝑁 , the function 𝑓 is compactly supported.

Claim. For every 𝐾 ∈ ̃0
𝐶
there exists 𝑥 ∈ [0, 1] × {0}𝑁−1 with 𝜕𝐿𝑓(𝑥) = 𝐾.

Proof of the Claim. It follows as in the proof of Lemma 3.9 by noticing that (3.29) gives us that

𝐷H(�̂�𝑛, ℎ(𝑑𝑛)) ⩽ 2𝛾𝑛, for all 𝑛 ∈ ℕ,

and that the Cantor set Δ is a perfect set.
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Finally, the differentiability of 𝑓 follows exactly as in the proof of Lemma 3.9. This completes
the proof of (i).
(ii) We now assume that there exists 𝜆 > 0 such that 𝐵(0, 𝜆) ⊂ 𝐶 and that 𝐶 is strictly convex.

To construct a function 𝑓 that satisfies (3.26)–(3.27), we replace the definition of �̃�𝑛 in (3.28) by

�̃�𝑛 ∶=
(
𝐴𝑛 + 𝐵(0, 2𝛾𝑛)

)
∩ 𝐶 =

⋃
𝑎∈𝐴𝑛

𝐵(𝑎, 2𝛾𝑛) ∩ 𝐶.

Thus, �̃�𝑛 is a finite union of strictly convex sets and 0 ∈ int(�̃�𝑛). Proceeding as before, it easily
follows that 𝜕𝐿𝑓(𝑥) ⊂ 𝐶 ⊂ 𝐵(0, 𝐿), for all 𝑥 ∈ ℝ𝑁 (in particular 𝑓 is 𝐿-Lipschitz) and (3.26) follows
as in (i). □

Similarly to the proof of Theorem 3.12, we can now use Lemma 3.15 to obtain the existence
of a compactly supported differentiable 1-Lipschitz function 𝑓 ∶ ℝ𝑁 → ℝ such that the range of
its limiting subdifferential 𝜕𝐿𝑓 contains all compact, connected subsets of the closed unit ball
𝐵(0, 1)with nonempty interior. (Notice that Lemma 3.15 uses the fact that the Euclidean balls are
strictly convex.) Then by a standard argument, already evoked in the beginning of Subsection 3.2,
see (3.12) we deduce the following result.

Theorem 3.16. There exists a differentiable locally Lipschitz function 𝑓 ∶ ℝ𝑁 → ℝ such that for
every compact, connected subset 𝐾 of ℝ𝑁 with nonempty interior, there exists 𝑥 ∈ ℝ𝑁 such that
𝜕𝐿𝑓(𝑥) = 𝐾. Moreover, given 𝜀 > 0, 𝑓 can be taken to satisfy ‖𝑓‖∞ < 𝜀.

Let us mention the following interesting consequence of the above result. Denoting by

gph(∇𝑓) ∶= {(𝑥,∇𝑓(𝑥)) ∶ 𝑥 ∈ ℝ𝑁} ⊂ ℝ𝑁 × ℝ𝑁

the graph of the derivative ∇𝑓 of a differentiable function 𝑓 ∶ ℝ𝑁 → ℝ, we have the following:

Corollary 3.17. There exists a differentiable locally Lipschitz function𝑓 ∶ ℝ𝑁 → ℝwith the property
that for every compact, connected subset 𝐾 of ℝ𝑁 with nonempty interior, there exists �̄� ∈ ℝ𝑁 such
that

(�̄�, 𝑦) ∈ gph(∇𝑓)⟺ 𝑦 ∈ 𝐾. (3.32)

This illustrates the gap betweenmere differentiability versus 1-smoothness, since in the latter
case, only a singleton set 𝐾 (namely, 𝐾 = {∇𝑓(�̄�)}) satisfies (3.32).
Let us finally notice that Theorem 3.16 can be seen as a result of almost exhaustiveness for the

limiting subdifferential of a differentiable, locally Lipschitz function. Indeed,Malý [21] established
a Darboux-type property for the gradient ∇𝑓 of a differentiable function 𝑓 in ℝ𝑁 , namely, that

∇𝑓(𝐵) ∶= {∇𝑓(𝑥) ∶ 𝑥 ∈ 𝐵}

is connected, for any convex body𝐵 ofℝ𝑁 . It follows that if𝑓 is differentiable and locally Lipschitz,
then the above set is bounded and the limiting subdifferential is also given by the formula

𝜕𝐿𝑓(�̄�) =
⋂
𝜀>0

cl
(
{∇𝑓(𝑥) ∶ 𝑥 ∈ 𝐵(�̄�, 𝜀)}

)
.
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Therefore, 𝜕𝐿𝑓(�̄�) contains {∇𝑓(�̄�)} and is always a compact connected set (as intersection of
nested compact connected sets). It follows that the differentiable, locally Lipschitz function 𝑓

of the statement of Theorem 3.16 is almost exhaustive for the limiting subdifferential (compare
with Definition 2.4).
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