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Abstract
We construct an example of a smooth convex function
on the plane with a strict minimum at zero, which is
real analytic except at zero, for which Thom’s gradient
conjecture fails both at zero and infinity. More precisely,
the gradient orbits of the function spiral around zero and
at infinity. Besides, the function satisfies the Łojasiewicz
gradient inequality at zero.
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1 INTRODUCTION

Answering a question of Whitney, Łojasiewicz [20] showed that every analytic variety 𝑓−1(0),
where 𝑓 ∶  ⊂ ℝ𝑁 → ℝ is real-analytic ( ≠ ∅, open), is a deformation retract of its open neigh-
borhood. The deformation was given by the flow of the Euclidean gradient −∇(𝑓2). The main
argument of Łojasiewicz was based on a famous lemma, nowadays known as the Łojasiewicz
(gradient) inequality, which asserts that for some 𝜗 ∈ (0, 1) and 𝑐 > 0 we have

‖∇𝑓(𝑥)‖ ⩾ 𝑐|𝑓(𝑥) − 𝑓(𝑎)|𝜗 (1.1)
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for all 𝑥 sufficiently close to 𝑎 ∈ 𝑓−1(0). The above inequality ensures that every bounded gradient
orbit 𝑡 ↦ 𝛾(𝑡) (that is, �̇� = ∇𝑓(𝛾)) has finite length and therefore converges to a singular point 𝛾∞
with ∇𝑓(𝛾∞) = 0.
Some years later, Thom conjectured that in this case, up to a change of coordinates that iden-

tifies 𝛾∞ to 0, the spherical part of the orbit also converges. In other words, the limit of secants

lim
𝑡→+∞

𝛾(𝑡) − 𝛾∞||𝛾(𝑡) − 𝛾∞|| exists. (1.2)

For decades, this has been known as the (Thom) gradient conjecture, see [1, 30]. (For the more
general problem of nonoscillation of trajectories, we refer to [4, 12, 25].) The gradient conjecture
makes sense for any gradient dynamics forwhich bounded orbits converge. Partial results revealed
that (1.2) should hold in the real-analytic case, see [13, 19, 28], fact that was eventually published
in full generality by Kurdyka,Mostowski and Parusiński [16] in 2000. The proof was based on (1.1)
together with concrete analytic estimations.
Łojasiewicz showed that the gradient inequality (1.1) remains valid also for 1 semialgebraic

(respectively, globally subabalytic) functions, see [21]. In 1998, Kurdyka [17] generalized (1.1) for
1 functions that are definable in some o-minimal structure, an axiomatic definition due to van
den Dries [31, 32] which encompasses semialgebraic and globally subanalytic functions, but also
larger classes that include the exponential function [24]. More precisely, Kurdyka showed that for
every definable function 𝑓 and critical value 𝑟∞ (which is necessarily isolated) there exists 𝛿 > 0

and a continuous function Ψ ∶ [𝑟∞, 𝑟∞ + 𝛿) → ℝ which is 1 on (𝑟∞, 𝑟∞ + 𝛿) with Ψ′ > 0 such
that

||∇(Ψ◦𝑓)(𝑥)|| ⩾ 1 (1.3)

for all 𝑥 ∈ ℝ𝑁 such that 𝑟∞ < 𝑓(𝑥) < 𝑟∞ + 𝛿. In addition, Kurdyka’s proof showed that the func-
tion Ψ can be taken in the same o-minimal structure as 𝑓. Consequently, if 𝑓 is semialgebraic
or globally subanalytic, then so is Ψ and due to Puiseux’s theorem we may take Ψ(𝑟) = 𝑟1−𝜗 , for
𝜗 ∈ (0, 1). It is then straightforward to see that (1.3) actually yields (1.1) for 𝑐 = (1 − 𝜗)−1.
We refer to (1.3) as the Kurdyka–Łojasiewicz (in short, KŁ) inequality and we call KŁ-function

any function with (upper) isolated critical values that satisfies the KŁ-inequality around any of
them. Similarly to the gradient inequality (1.1), bounded gradient orbits of a KŁ-function have
finite length. There are well-known examples of ∞ functions in ℝ2 with isolated critical values
that are not KŁ-functions (they have bounded gradient orbits which fail to converge), see [10, 26].
Bounded gradient orbits of convex functions have finite length [7, 23] and therefore converge,
but there are also examples of 2-smooth convex functions failing KŁ-property, see [2, §4.3] or
[3, §5.1]. In [2], we characterized the class of KŁ-functions (among the ones with upper isolated
critical values) and gave criteria for a convex function to be KŁ.
In [18], Kurdyka and Parusinski usedKŁ-inequality togetherwith a quasi-convex cell decompo-

sition of o-minimal sets and concrete estimates to show that the gradient conjecture holds for 1
o-minimal functions provided either𝑁 = 2 (planar case) or the structure is polynomially bounded
(in particular if 𝑓 is semialgebraic or globally subanalytic). On the other hand, mere convexity is
not sufficient to guarantee (1.2): there exist examples of convex functionswhose orbits either spiral
[8, §7.2] or oscillate between two secants [3].
In [11], Grandjean considered the behavior of the secants at infinity: he showed that if 𝑓 is a 1

semialgebraic function and 𝑡 ↦ 𝛾(𝑡) is a gradient orbit satisfying ||𝛾(𝑡)|| →∞, as 𝑡 → +∞, then
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the limit of secants at infinity

lim
𝑡→+∞

𝛾(𝑡)||𝛾(𝑡)|| exists (gradient conjecture at infinity). (1.4)

The proof is based on a Łojasiewicz type gradient inequality at infinity previously obtained by the
author together with D’Acunto in [6].
The behavior of secants at infinity has recently become relevant inMachine Learning. If a deep

network model is unbiased and homogeneous (max-pooling, ReLu, linear and convolutional lay-
ers), then minimizing the cross-entropy or other classification losses forces the parameters of the
model to diverge in norm to infinity [22]. In this setting, convergence of the secants at infinity is
important. In [14], the authors manage to establish that for a certain type of prediction functions
(𝐿-homogeneous and definable in the log-exp structure) (1.4) holds. For the time being, no further
results have been reported.
In a nutshell, proving the gradient conjecture (respectively, the gradient conjecture at infin-

ity) seems to require at least the KŁ-inequality (1.3) together with other properties of o-minimal
functions, but it is still unknown if these conjectures are true for general o-minimal functions.
In this work, we present an example of a smooth convex function in ℝ2, which is real-analytic

outside zero (its unique critical point), it satisfies the Łojasiewicz inequality (1.1) and fails the
gradient conjecture both at zero and at infinity. In particular, all gradient orbits spiral both at zero
and at infinity, underlying in this way the two failures of o-minimality of the function, despite the
fact that the function is convex and satisfies the Łojasiewicz gradient inequality.

Theorem 1.1 (main result). For every 𝑘 ∈ ℕ, there exists a 𝑘-convex function 𝑓 ∶ ℝ2 → ℝ with a
unique minimum at  ∶= (0, 0) such that:

– 𝑓 is real analytic on ℝ2 ⧵ {} ;
– 𝑓 satisfies the Łojasiewicz inequality at ; and
– every maximal gradient orbit 𝛾 ∶ (−∞,𝑇) → ℝ2 of 𝑓 spirals infinitely many times both when 𝑡 →
−∞ (around the origin ) and 𝑡 → 𝑇 (at infinity). As we show in Lemma 4.1, 𝑇 < +∞, that is,
maximal orbits blow up in finite positive time.

Throughout the manuscript, by gradient orbits (or gradient trajectories), we refer to maximal
solutions of the ordinary differential equation:

𝛾′(𝑡) = ∇𝑓(𝛾(𝑡)).

In our example, the function 𝑓 will be convex, with unique critical point (global minimizer) at,
where we tacitly assume that 𝛾(0) ≠  (avoiding stationary orbits).
Let us briefly describe our strategy for the construction of this example: in Section 2, we pre-

scribe a family of convex sets, all being delimited by ellipses, centered at the origin, and obtained
via rotations and size adjustments of a basic ellipse𝐸(0). This is done in away that convex foliation
is obtained, which can be represented by some (quasi-convex) function.
In Section 3, we further calibrate the parameters so that we can apply a criterium due to de

Finetti [9] and Crouzeix [5] that guarantees that the aforementioned quasi-convex function is in
fact convex. The construction yields that the function is real-analytic on ℝ2 ⧵ , which of course
cannot be further improved to real analyticity on the whole space, due to the proof of Thom’s
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gradient conjecture [16]. Instead, we are able to show that the function can be taken 𝑘-smooth at
 for arbitrary large 𝑘 ∈ ℕ. Still our construction fails to ensure ∞. Finally, applying a result of
[2] which gives conditions for a convex function to satisfy (1.3), we show that our function satisfies
KŁ-inequality and in fact even (1.1) (the Łojasiewicz inequality).
Gradient orbits are perpendicular to the foliation and explicit calculations, conducted in Sec-

tion 4, show that the orbits turn around both at the origin and at infinity, which disproves the
conjecture. An additional difficulty to establish spirality is that the evolution of the spherical part
of the orbit (the rotation angle 𝛼(𝑡) of 𝛾(𝑡) in polar coordinates) is not monotone in time, so that
the decrease rate is established in average, see Figures 3 and 4. For a study of monotonic spiraling
of orbits of general analytic vector fields in dimensions 2 and 3, we refer to [29].

2 CONSTRUCTION OF A CONVEX REAL ANALYTIC FOLIATION IN
ℝ𝟐 ⧵ {}

Let us first consider two smooth increasing functions 𝑎, 𝑏 ∶ ℝ → (0,+∞) for which we assume:

⎧⎪⎪⎨⎪⎪⎩

lim
𝑡→+∞

𝑎(𝑡) = lim
𝑡→+∞

𝑏(𝑡) = +∞

lim
𝑡→−∞

𝑎(𝑡) = lim
𝑡→−∞

𝑏(𝑡) = 0 and

𝑎(𝑡) ⩾ 𝑏(𝑡), for all 𝑡 ∈ ℝ.

(2.1)

The exact definition of the functions 𝑎(𝑡) and 𝑏(𝑡)will be given in Lemma 3.1 (Section 3). We also
consider the rotation matrix by an angle 𝑡 denoted by

𝑅(𝑡) =

(
cos 𝑡 − sin 𝑡

sin 𝑡 cos 𝑡

)
(2.2)

For 𝑡 ∈ ℝ and 𝜃 ∈ 𝕋 ∶= ℝ∕2𝜋ℤ, we set

𝑚(𝑡, 𝜃) ∶= (𝑥(𝑡, 𝜃), 𝑦(𝑡, 𝜃)) = (𝑎(𝑡) cos 𝜃, 𝑏(𝑡) sin 𝜃),

and

𝑀(𝑡, 𝜃) ∶= 𝑅(𝑡)𝑚(𝑡, 𝜃) = (𝑋(𝑡, 𝜃), 𝑌(𝑡, 𝜃)). (2.3)

Therefore {
𝑋(𝑡, 𝜃) = 𝑥(𝑡, 𝜃) cos 𝑡 − 𝑦(𝑡, 𝜃) sin 𝑡 = 𝑎(𝑡) cos 𝑡 cos 𝜃 − 𝑏(𝑡) sin 𝑡 sin 𝜃

𝑌(𝑡, 𝜃) = 𝑥(𝑡, 𝜃) sin 𝑡 + 𝑦(𝑡, 𝜃) cos 𝑡 = 𝑎(𝑡) sin 𝑡 cos 𝜃 + 𝑏(𝑡) cos 𝑡 sin 𝜃 .
(2.4)

The subset

(𝑡) ∶= {𝑀(𝑡, 𝜃) ∶ 𝜃 ∈ 𝕋} (2.5)
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F IGURE 1 The ellipse (𝑡) and the map (𝑡, 𝜃) ↦ 𝑀(𝑡, 𝜃)

is an ellipse with major axis of length 𝑎(𝑡) and minor axis of length 𝑏(𝑡) (see Figure 1 for illustra-
tion). Note that (𝑡) is the rotation by angle 𝑡 of the ellipse

𝐸(𝑡) ∶=
{
𝑚(𝑡, 𝜃) ∶ 𝜃 ∈ 𝕋

}
=

{
(𝑥, 𝑦) ∈ ℝ2 ∶

𝑥2

𝑎2(𝑡)
+

𝑦2

𝑏2(𝑡)
= 1

}
.

Under an additional condition on the functions 𝑎, 𝑏, the family of ellipses {(𝑡)}𝑡∈ℝ defined
in (2.5) is disjoint with union equal to ℝ2 ⧵ {}. More precisely, denoting by 𝑎′, 𝑏′ the derivatives
of the functions 𝑎, 𝑏, respectively, we have the following result:

Lemma 2.1 (Convex foliation by ellipses). Let 𝑎, 𝑏 ∶ ℝ → (0,+∞) satisfy (2.1) and assume

4 𝑎(𝑡) 𝑏(𝑡) 𝑎′(𝑡) 𝑏′(𝑡) > (𝑎(𝑡)2 − 𝑏(𝑡)2)2 , for all 𝑡 ∈ ℝ. (2.6)

Then ((𝑡))𝑡∈ℝ defines an analytic convex foliation of ℝ2 ⧵ {}.
Proof. The proof is divided in three steps:
Step 1. The map𝑀 ∶ ℝ × 𝕋 → ℝ2 ⧵ {} is a local analytic diffeomorphism.
Indeed, let us first note that the map𝑀, defined by (2.3)–(2.4), is real-analytic as composition

of analytic functions. Therefore, if we show that the Jacobian matrix 𝑀 =
( 𝜕𝑋

𝜕𝑡

𝜕𝑋

𝜕𝜃
𝜕𝑌

𝜕𝑡

𝜕𝑌

𝜕𝜃

)
is invertible

at each point (𝑡, 𝜃) ∈ ℝ × 𝕋, the assertion follows from the local analytic inverse function theo-
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rem [15, Theorem 2.5.1]. To this end, we shall prove that

det(𝑀) =
𝜕𝑋

𝜕𝑡

𝜕𝑌

𝜕𝜃
−
𝜕𝑌

𝜕𝑡

𝜕𝑋

𝜕𝜃
=

⟨
𝜕𝑀

𝜕𝑡
, 𝑛

⟩
> 0, (2.7)

where 𝑛(𝑡, 𝜃) = −𝑅(𝜋
2
) 𝜕𝑀
𝜕𝜃

= (𝜕𝑌
𝜕𝜃
, −𝜕𝑋

𝜕𝜃
) is the outer unit normal to the convex set conv (𝑡) (con-

vex envelope of (𝑡)) at𝑀(𝑡, 𝜃). Recalling that𝑀(𝑡, 𝜃) = 𝑅(𝑡)𝑚(𝑡, 𝜃) (see (2.3)) and that the rota-
tion matrix (2.2) satisfies

𝑅′(𝑡) = 𝑅(𝑡 +
𝜋

2
), 𝑅(𝑡)−1 = 𝑅(𝑡)𝑇 = 𝑅(−𝑡) and 𝑅(𝑡) 𝑅(𝑠) = 𝑅(𝑡 + 𝑠),

we deduce ⟨
𝜕𝑀

𝜕𝑡
, 𝑛

⟩
=

⟨
𝜕

𝜕𝑡
(𝑅(𝑡)𝑚), −𝑅(

𝜋

2
)
𝜕

𝜕𝜃
(𝑅(𝑡)𝑚)

⟩
=

⟨
𝑅′(𝑡)𝑚 + 𝑅(𝑡)

𝜕𝑚

𝜕𝑡
, −𝑅(

𝜋

2
) 𝑅(𝑡)

𝜕𝑚

𝜕𝜃

⟩
=

⟨
𝑅(𝑡 +

𝜋

2
)𝑚 + 𝑅(𝑡)

𝜕𝑚

𝜕𝑡
, 𝑅(𝑡 −

𝜋

2
)
𝜕𝑚

𝜕𝜃

⟩
=

⟨
𝑅(𝑡 −

𝜋

2
)𝑇𝑅(𝑡 +

𝜋

2
)𝑚,

𝜕𝑚

𝜕𝜃

⟩
+

⟨
𝑅(𝑡 −

𝜋

2
)𝑇𝑅(𝑡)

𝜕𝑚

𝜕𝑡
,
𝜕𝑚

𝜕𝜃

⟩
= −

⟨
𝑚,

𝜕𝑚

𝜕𝜃

⟩
+

⟨
𝑅(
𝜋

2
)
𝜕𝑚

𝜕𝑡
,
𝜕𝑚

𝜕𝜃

⟩
.

Plugging

𝜕𝑚

𝜕𝜃
= (−𝑎 sin 𝜃, 𝑏 cos 𝜃) and 𝜕𝑚

𝜕𝑡
= (𝑎′ cos 𝜃, 𝑏′ sin 𝜃)

into the above equality, we end up with the expression:

det(𝑀) =

⟨
𝜕𝑀

𝜕𝑡
, 𝑛

⟩
= 𝑎′𝑏 cos2 𝜃 + 𝑎𝑏′ sin2 𝜃 + (𝑎2 − 𝑏2) cos 𝜃 sin 𝜃. (2.8)

This is a quadratic expression with respect to cos 𝜃 and sin 𝜃, which is positive for all 𝜃 ∈ 𝕋 if and
only if the discriminant (𝑎2 − 𝑏2)2 − 4𝑎𝑎′𝑏𝑏′ is negative. The result follows in view of (2.6).
Step 2. The map𝑀 ∶ ℝ × 𝕋 → ℝ2 ⧵ {} is injective.
Fix 𝑡 ∈ ℝ. From (2.7)–(2.8), using compactness of (𝑡) and smoothness of 𝑀, we deduce the

existence of 𝛿𝑡, 𝜌𝑡 > 0 such that, for all 𝑠 ∈ [𝑡, 𝑡 + 𝛿𝑡], 𝜃 ∈ 𝕋,⟨
𝜕𝑀

𝜕𝑡
(𝑠, 𝜃), 𝑛(𝑡, 𝜃)

⟩
⩾ 𝜌𝑡 > 0,

which yields⟨
𝑀(𝑠, 𝜃) − 𝑀(𝑡, 𝜃), 𝑛(𝑡, 𝜃)

⟩
⩾ 𝜌𝑡(𝑠 − 𝑡) > 0, for 𝑡 < 𝑠 ⩽ 𝑡 + 𝛿𝑡 and 𝜃 ∈ 𝕋.
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It follows that conv (𝑡) ⊂ int conv (𝑠) for all 𝑠 > 𝑡. Therefore, the family (conv (𝑡))𝑡∈ℝ is nested
and the map𝑀 is injective.
Step 3. The map𝑀 ∶ ℝ × 𝕋 → ℝ2 ⧵ {} is surjective.
Fix (𝑥, 𝑦) ∈ ℝ2 ⧵ {} and set, for 𝑡 ∈ ℝ and 𝐷(𝑡) =

(
𝑎(𝑡) 0
0 𝑏(𝑡)

)
,

𝜌(𝑡) ∶= ||𝐷(𝑡)−1𝑅(𝑡)−1(𝑥, 𝑦)||2 = 1

𝑎2(𝑡)
(𝑥 cos 𝑡 + 𝑦 sin 𝑡)2 +

1

𝑏2(𝑡)
(−𝑥 sin 𝑡 + 𝑦 cos 𝑡)2.

We claim that 𝜌 is a smooth decreasing function with lim−∞ 𝜌 = +∞ and lim+∞ 𝜌 = 0.
Indeed, since (𝑥, 𝑦) ≠ (0, 0), we get 𝑅(𝑡)−1(𝑥, 𝑦) ≠ (0, 0) and either 𝑥 cos 𝑡 + 𝑦 sin 𝑡 ≠ 0 or

−𝑥 sin 𝑡 + 𝑦 cos 𝑡 ≠ 0. Recalling that𝑎(𝑡), 𝑏(𝑡) → 0 as 𝑡 → −∞, we deduce lim−∞ 𝜌 = +∞.We also
observe that lim+∞ 𝜌 = 0 is a direct consequence of the fact 𝑎(𝑡), 𝑏(𝑡) → +∞ as 𝑡 → +∞.
It remains to prove that 𝜌′ is negative. To this end, set 𝑞(𝑡) ∶= 𝑥 cos 𝑡 + 𝑦 sin 𝑡 and notice that

𝜌 = 𝑎−2𝑞2 + 𝑏−2(𝑞′)2. Using that 𝑞′′ = −𝑞, we infer

𝜌′(𝑡) = −2𝑎′𝑎−3𝑞2 + 2𝑎−2𝑞′𝑞 − 2𝑏′𝑏−3(𝑞′)2 + 2𝑏−2𝑞′′𝑞′

= −2𝑎−2𝑏−2
(
𝑎′𝑎−1𝑏2𝑞2 + (𝑎2 − 𝑏2)𝑞𝑞′ + 𝑏′𝑏−1𝑎2(𝑞′)2

)
.

The quadratic expression 𝑎′𝑎−1𝑏2𝑞2 + (𝑎2 − 𝑏2)𝑞𝑞′ + 𝑏′𝑏−1𝑎2(𝑞′)2 with respect to 𝑞 and 𝑞′ is pos-
itive if and only if its discriminant is negative, which is equivalent, once again, to assume (2.6).
Thus 𝜌 is strictly decreasing and the claim follows.
Using the claim, we infer that there exists a unique 𝑡 ∈ ℝ such that

𝜌(𝑡) = ||𝐷(𝑡)−1𝑅(𝑡)−1(𝑥, 𝑦)||2 = 1.

Therefore, there exists a unique 𝜃 ∈ 𝕋 such that𝐷(𝑡)−1𝑅(𝑡)−1(𝑥, 𝑦) = (cos 𝜃, sin 𝜃). It follows that
𝑀(𝑡, 𝜃) = (𝑥, 𝑦), which proves that𝑀 is onto. □

A typical instance where Lemma 2.1 applies is to take 𝑎 = 𝜇𝑏 for some constant 𝜇 > 1. Then
for 𝑏(𝑡) = 𝑒𝜈𝑡 with 𝜈 > 𝜇2−1

2𝜇
, it is straightforward to check that 𝑎, 𝑏 satisfy (2.1) and (2.6). Figure 2

represents the explicit choice 𝜇 = 2 and 𝜈 = 1 leading to 𝑎(𝑡) = 2𝑒𝑡 and 𝑏(𝑡) = 𝑒𝑡.

3 DEFINING THE CONVEX FUNCTION AND REGULARITY
PROPERTIES

In this section, we shall show that for a more precise choice of the functions 𝑎(𝑡), 𝑏(𝑡) we can
construct a convex function whose level sets are exactly the foliation {(𝑡)}𝑡∈ℝ. Moreover, we shall
show that this convex function is smooth, real-analytic on ℝ2 ⧵ {} and satisfies (1.1).
Concretely, let us denote by 𝜑 ∶ ℝ → ℝ a smooth strictly increasing function satisfying

𝜑(−∞) ∶= lim
𝑡→−∞

𝜑(𝑡) = 0 (the concrete definition of the function 𝜑 will be given in (3.2), see
Lemma 3.1) and let us set for all𝑀 ∈ ℝ2

𝑓(𝑀) =

{
0, if𝑀 = (0, 0),

𝜑(𝑡), if 𝑀 ∈ (𝑡), (3.1)
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F IGURE 2 The convex foliation ((𝑡))𝑡∈ℝ for 𝑎(𝑡) = 2𝑏(𝑡) = 2𝑒𝑡

where (𝑡) is the ellipse given in (2.5). We shall now show that we can adjust the parameters and
choose 𝜑 in a way that (3.1) gives a well-defined convex function.

Lemma 3.1 (Construction of the convex function). Setting for 𝑡 ∈ ℝ

𝑎(𝑡) =
√
2 exp(𝑡), 𝑏(𝑡) = exp(𝑡) in (2.4),

𝜑(𝑡) = exp(𝑡∕𝜏), 𝜏 ∈ (0, 1

10
), in (3.1),

(3.2)

the function 𝑓 defined by (3.1) is convex, with level sets the ellipses (𝑡) and argmin 𝑓 = {}.
Proof. Since the functions 𝑎, 𝑏 satisfy (2.1) and (2.6), we deduce by Lemma 2.1 that conv((𝑡))𝑡∈ℝ
is a convex foliation. In particular, the function 𝑓 is well defined from (3.1) with sublevel sets

[𝑓 ⩽ 𝜆] ∶= {𝑀 ∈ ℝ2 ∶ 𝑓(𝑀) ⩽ 𝜆} = conv [(𝜑−1(𝜆))] = conv [(𝜏 log 𝜆)]
compact and convex. Therefore 𝑓 is a coercive, quasi-convex function.
We shall now use a result due to de Finetti and Crouzeix [5, 9] which asserts that the quasi-

convex function 𝑓 is convex if and only if

𝜆 ↦ 𝜎[𝑓⩽𝜆](𝑝) is concave for every 𝑝 ∈ ℝ2,

where 𝜎𝐴(𝑝) = max𝑀∈𝐴 ⟨𝑝,𝑀⟩ is the support function to the subset𝐴. Without loss of generality,
we may restrict to unit vectors 𝑝 ∈ ℝ2, which results in assuming that 𝑝 = (cos 𝛼, sin 𝛼), for some
𝛼 ∈ 𝕋. Therefore, we are led to prove that the function

𝐺𝛼(𝜆) ∶= sup
{⟨

(𝑥, 𝑦), (cos 𝛼, sin 𝛼)
⟩
∶ 𝑓(𝑥, 𝑦) ⩽ 𝜆

}
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= sup
{⟨

𝑀(𝑡, 𝜃), (cos 𝛼, sin 𝛼)
⟩
∶ 𝑓(𝑀(𝑡, 𝜃)) = 𝜑(𝑡) ⩽ 𝜆

}
= max

{⟨
𝑀(𝑡, 𝜃), (cos 𝛼, sin 𝛼)

⟩
∶ 𝜃 ∈ 𝕋, 𝑡 = 𝑡(𝜆) = 𝜑−1(𝜆)

}
is concave. To this end, after straightforward calculations we obtain⟨

𝑀(𝑡, 𝜃), (cos 𝛼, sin 𝛼)
⟩
=

⟨
𝑅(𝑡)𝑚(𝑡, 𝜃), (cos 𝛼, sin 𝛼)

⟩
=

⟨
(𝑎(𝑡) cos 𝜃, 𝑏(𝑡) sin 𝜃), 𝑅(−𝑡) (cos 𝛼, sin 𝛼)

⟩
=

⟨
(cos 𝜃, sin 𝜃), (𝑎(𝑡) cos(𝛼 − 𝑡), 𝑏(𝑡) sin(𝛼 − 𝑡))

⟩
whence we deduce

𝐺𝛼(𝜆) =
‖‖‖ 𝑎(𝑡(𝜆)) cos(𝛼 − 𝑡(𝜆)), 𝑏(𝑡(𝜆)) sin(𝛼 − 𝑡(𝜆))

‖‖‖ =
√

g𝛼(𝜆) (3.3)

with

g𝛼(𝜆) = 𝑎(𝑡(𝜆))2 cos2(𝑡(𝜆) − 𝛼) + 𝑏(𝑡(𝜆))2 sin2(𝑡(𝜆) − 𝛼). (3.4)

Calculating the second derivative of 𝐺𝛼 in (3.3) yields

𝐺′′
𝛼 =

2g ′′𝛼 g𝛼 − (g ′𝛼)
2

4g3∕2𝛼

.

Therefore, the functions {𝐺𝛼}𝛼∈𝕋 are concave provided we establish:

2g ′′𝛼 g𝛼 − (g ′𝛼)
2 ⩽ 0, for all 𝛼 ∈ 𝕋 . (3.5)

At this step, we replace in (3.4) the choice for 𝑎, 𝑏 and 𝜑 given in (3.2):

𝑎(𝑡) =
√
2 𝑒𝑡 , 𝑏(𝑡) = 𝑒𝑡 and 𝜆 = 𝜑(𝑡) = 𝑒𝑡∕𝜏, for all 𝑡 ∈ ℝ,

and we seek for the values of 𝜏 > 0 that ensure inequality (3.5). In particular,

𝑡 ∶= 𝑡(𝜆) = 𝜏 log 𝜆, whence 𝑡′(𝜆) = 𝜏

𝜆
and 𝑡′′(𝜆) = −

𝜏

𝜆2
< 0.

After tedious computations, we get

g𝛼 = 𝑒2𝑡
(
cos2(𝑡−𝛼) + 1

)
, g ′𝛼 = 2 𝑒2𝑡 𝑡′

(
cos2(𝑡−𝛼) + 1 − cos(𝑡−𝛼) sin(𝑡−𝛼)

)
and

g ′′𝛼 = 2𝑒2𝑡
(
(𝑡′)2(3 − 4 cos(𝑡−𝛼) sin(𝑡−𝛼)) + 𝑡′′

(
cos2(𝑡−𝛼) + 1 − cos(𝑡−𝛼) sin(𝑡−𝛼)

))
.
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Hence

2g ′′𝛼 g𝛼 − (g ′𝛼)
2 = 4𝑒4𝑡(𝑡′)2

{(
cos2(𝑡 − 𝛼) + 1

)
(3 − 4 cos(𝑡 − 𝛼) sin(𝑡 − 𝛼))

−
(
cos2(𝑡 − 𝛼) + 1 − cos(𝑡 − 𝛼) sin(𝑡 − 𝛼)

)2
+ 4 𝑒4𝑡 𝑡′′

(
cos2(𝑡 − 𝛼) + 1

)
×
(
cos2(𝑡 − 𝛼) + 1 − cos(𝑡 − 𝛼) sin(𝑡 − 𝛼)

)}
⩽ 4𝑒4𝑡

(
5(𝑡′)2 +

1

2
𝑡′′

)
⩽

2𝜏(10𝜏 − 1)𝑒4𝑡

𝜆2
,

which is negative provided we choose 𝜏 < 1∕10. □

We fix𝑀 ∶ ℝ × 𝕋 ↦ ℝ2∖{} under the choice made in Lemma 3.1, that is,
𝑀(𝑡, 𝜃) = (𝑋(𝑡, 𝜃), 𝑌(𝑡, 𝜃)) = 𝑒𝑡

(√
2 cos 𝑡 cos 𝜃 − sin 𝑡 sin 𝜃,

√
2 sin 𝑡 cos 𝜃 + cos 𝑡 sin 𝜃

)
. (3.6)

Setting {
𝑓 ∶ ℝ × 𝕋 ↦ ℝ

𝑓(𝑡, 𝜃) = 𝜑(𝑡) = exp(𝑡∕𝜏)
(3.7)

we observe that the convex function 𝑓 defined in (3.1) satisfies

𝑓(𝑥, 𝑦) =

{
(𝑓◦𝑀−1)(𝑥, 𝑦), if (𝑥, 𝑦) ≠ ,

0, if (𝑥, 𝑦) = . (3.8)

With the next couple of lemmas, we show that the function 𝑓, apart from being convex, enjoys
several other good properties.

Lemma 3.2 (Properties of the convex function). Let 𝑓 ∶ ℝ2 ↦ [0, +∞) be the convex function
defined by (3.6)–(3.8) for 0 < 𝜏 < 1∕10. Then:

(i) 𝑓 is strictly positive on ℝ2 ⧵ {} with 𝑓() = 0 ;

(ii) for all (𝑥, 𝑦) ∈ ℝ2, it holds(
1∕

√
2
)1∕𝜏‖‖(𝑥, 𝑦)‖‖1∕𝜏 ⩽ 𝑓(𝑥, 𝑦) ⩽ ‖‖(𝑥, 𝑦)‖‖1∕𝜏; (3.9)

In particular, 𝑓 is coercive;
(iii) 𝑓 is real analytic on ℝ2 ⧵ {} and 𝑓 ∈ 1(ℝ2) ;
(iv) 𝑓 satisfies the Łojasiewicz inequality (1.1) with 𝜗 = 1 − 𝜏, 𝑐 = 𝜏∕

√
2, 𝑎 ≡  and 𝑓() = 0, that

is

‖∇𝑓(𝑥, 𝑦)‖ ⩾

(
𝜏√
2

)
𝑓(𝑥, 𝑦)1−𝜏 , for all (𝑥, 𝑦) ∈ ℝ2. (3.10)
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Proof.

(i) It is straightforward from the definition of 𝑓 in (3.1) and the choice of 𝜑.
(ii) From Lemma 2.1, for every (𝑥, 𝑦) ∈ ℝ2 ⧵ {}, there exists a unique 𝑡 ∈ ℝ such that (𝑥, 𝑦) ∈

(𝑡) and we have
𝑥2 + 𝑦2

𝑎2(𝑡)
⩽

1

𝑎2(𝑡)
(𝑥 cos 𝑡 + 𝑦 sin 𝑡)2 +

1

𝑏2(𝑡)
(−𝑥 sin 𝑡 + 𝑦 cos 𝑡)2 = 1 ⩽

𝑥2 + 𝑦2

𝑏2(𝑡)
,

whence

𝑒𝑡 = 𝑏(𝑡) ⩽ ‖(𝑥, 𝑦)‖ ⩽ 𝑎(𝑡) =
√
2𝑒𝑡.

We deduce easily that

2−1∕(2𝜏) ‖(𝑥, 𝑦)‖1∕𝜏 ⩽ 𝑓(𝑥, 𝑦) = 𝜑(𝑡) = 𝑒𝑡∕𝜏 ⩽ ‖(𝑥, 𝑦)‖1∕𝜏.
(iii) It follows from (3.1) that 𝑓 = 𝜑 ◦𝑝1 ◦𝑀

−1 onℝ2 ⧵ {}, where 𝑝1 ∶ ℝ × 𝕋 ↦ ℝwith 𝑝1(𝑡, 𝜃) =
𝑡. By Lemma 2.1, the map 𝑀 ∶ ℝ × 𝕋 ↦ ℝ2 ⧵ {} given in (3.6) is a real analytic diffeomor-
phism. Since 𝑝1 and 𝜑 are analytic, the first part of the assertion follows. In particular, the
function 𝑓 is ∞-smooth on ℝ2 ⧵ {}.
Since 1∕𝜏 > 1, the function (𝑥, 𝑦) ↦ ‖(𝑥, 𝑦)‖1∕𝜏 is 1 over ℝ2 and (3.9) yields that 𝑓 is differ-
entiable at  with ∇𝑓() = 0. Therefore 𝑓 is differentiable everywhere in ℝ2 and, since it is
convex, it is 1 (see, for instance, [27, p. 20]).

(iv) Since 𝑆 ∶= argmin𝑓 = {}, we have dist𝑆(𝑀) = ‖𝑀‖ for all 𝑀=(𝑥, 𝑦)∈ℝ2. Therefore, the
first inequality in (3.9) can be written

𝑓(𝑀) ⩾ 𝐦(dist𝑆(𝑀)) for all𝑀 ∈ ℝ2,

where𝐦(𝑟) = 2−1∕(2𝜏) 𝑟1∕𝜏. Since

𝐦−1(𝑠)

𝑠
=

√
2 𝑠𝜏−1 ∈ 𝐿1

loc
((0, +∞)),

we deduce from [2, Theorem 30] that the KŁ-inequality

‖∇(𝜓◦𝑓)(𝑀)‖ ⩾ 1,

holds for all𝑀 ∈ [𝑓 > 0] ∶= ℝ2 ⧵ {}, where

𝜓(𝑠) = ∫
𝑠

0

𝐦−1(𝜎)

𝜎
𝑑𝜎 =

√
2

𝜏
𝑠𝜏.

A straightforward calculation shows that (3.10) holds. □

Lemma 3.3 (𝑘-smoothness of the convex function). Let 𝑓 be the convex function defined by
(3.7)–(3.8) for 0 < 𝜏 < 1∕10. Let 𝑘 ∈ ℕ be the biggest integer such that 𝑘 < 1

𝜏
. Then 𝑓 ∈ 𝑘(ℝ2) and

𝑓 ∉ 𝑘+1(ℝ2).
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Proof. Recalling that 𝑓 is real analytic inℝ2 ⧵ {}with 𝑓() = 0 and∇𝑓() = 0, in order to prove
that 𝑓 is 𝑘, it is sufficient to show that all the partial derivatives

𝜕𝑙1+𝑙2𝑓

𝜕𝑥𝑙1𝜕𝑦𝑙2
, 𝑙1 + 𝑙2 ⩽ 𝑘, (3.11)

which exist inℝ2 ⧵ {}, converge to 0 at. To this end, it is more convenient to start by computing
the partial derivatives of 𝑓 defined in (3.7). We have

𝑓(𝑡, 𝜃) ∶= 𝑓(𝑀(𝑡, 𝜃)) = 𝑒𝑡∕𝜏 = 𝑓(𝑥, 𝑦) for (𝑥, 𝑦) = 𝑀(𝑡, 𝜃) = (𝑋(𝑡, 𝜃), 𝑌(𝑡, 𝜃)),

and by differentiation, we obtain

⎛⎜⎜⎝
𝜕𝑓

𝜕𝑡

𝜕𝑓

𝜕𝜃

⎞⎟⎟⎠ =
( 1

𝜏
𝑒𝑡∕𝜏

0

)
=

⎛⎜⎜⎝
𝜕𝑋

𝜕𝑡

𝜕𝑌

𝜕𝑡

𝜕𝑋

𝜕𝜃

𝜕𝑌

𝜕𝜃

⎞⎟⎟⎠
⎛⎜⎜⎝
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

⎞⎟⎟⎠. (3.12)

We can compute explicitly the partial derivatives of 𝑋 and 𝑌, see (3.6), to obtain

𝜕𝑋

𝜕𝑡
,
𝜕𝑌

𝜕𝑡
,
𝜕𝑋

𝜕𝜃
,
𝜕𝑌

𝜕𝜃
= 𝑒𝑡𝑃(𝑡, 𝜃),

where 𝑃(𝑡, 𝜃) denotes generically a smooth periodic (hence bounded) function with respect to 𝑡
and 𝜃. More generally, in what follows, 𝑃𝑛,𝑚(𝑡, 𝜃) (respectively, 𝐵𝑛,𝑚(𝑡, 𝜃)) denotes a 𝑛 × 𝑚matrix,
the coefficients of which are smooth and periodic with respect to 𝑡 and 𝜃 (respectively, bounded
in (−∞, 1] × ℝ). It follows that

⎛⎜⎜⎝
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

⎞⎟⎟⎠ = 1
𝜕𝑋

𝜕𝑡

𝜕𝑌

𝜕𝜃
− 𝜕𝑌

𝜕𝑡

𝜕𝑋

𝜕𝜃

⎛⎜⎜⎝
𝜕𝑌

𝜕𝜃
−𝜕𝑌

𝜕𝑡

−𝜕𝑋

𝜕𝜃

𝜕𝑋

𝜕𝑡

⎞⎟⎟⎠
( 1

𝜏
𝑒𝑡∕𝜏

0

)
.

Since

0 < 𝑒2𝑡(
√
2 −

1

2
) ⩽

𝜕𝑋

𝜕𝑡

𝜕𝑌

𝜕𝜃
−
𝜕𝑌

𝜕𝑡

𝜕𝑋

𝜕𝜃
= 𝑒2𝑡(

√
2 + cos 𝜃 sin 𝜃) ⩽ 𝑒2𝑡(

√
2 +

1

2
),

we obtain

⎛⎜⎜⎝
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

⎞⎟⎟⎠ = 𝑒(
1
𝜏
−1)𝑡𝑃2,1(𝑡, 𝜃), (3.13)

from which we infer that 𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
→ 0 as (𝑥, 𝑦) →  or equivalently as 𝑡 → −∞, since 1

𝜏
> 1. We

then recover the fact that 𝑓 is 1, with ∇𝑓() = (0, 0).
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To prove that 𝑓 is 2 (when 1

𝜏
> 2), we differentiate again (3.12) to obtain

⎛⎜⎜⎜⎜⎝
𝜕2𝑓

𝜕𝑡2

𝜕2𝑓

𝜕𝑡𝜕𝜃

𝜕2𝑓

𝜕𝜃2

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1

𝜏2
𝑒𝑡∕𝜏

0

0

⎞⎟⎟⎟⎟⎠
= 𝑒2𝑡𝑃3,3(𝑡, 𝜃)

⎛⎜⎜⎜⎜⎜⎝

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2

⎞⎟⎟⎟⎟⎟⎠
+ 𝑒𝑡𝑃3,2(𝑡, 𝜃)

⎛⎜⎜⎝
𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑦

⎞⎟⎟⎠, (3.14)

where the coefficients of 𝑒2𝑡𝑃3,3(𝑡, 𝜃) are of the form

𝑍1𝑍2, with 𝑍1, 𝑍2 ∈ 1 ∶=

{
𝜕𝑋

𝜕𝑡
,
𝜕𝑌

𝜕𝑡
,
𝜕𝑋

𝜕𝜃
,
𝜕𝑌

𝜕𝜃

}
and the coefficients of 𝑒𝑡𝑃3,2(𝑡, 𝜃) are second derivatives of 𝑋, 𝑌. The matrix 𝑃3,3(𝑡, 𝜃) is invertible
since (𝑡, 𝜃) ∈ ℝ × 𝕋 ↦ 𝑀(𝑡, 𝜃) ∶= (𝑥, 𝑦) ∈ ℝ2 ⧵ {} is an analytic diffeomorphism. Finally,we get

⎛⎜⎜⎜⎜⎜⎝

𝜕2𝑓

𝜕𝑥2

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2

⎞⎟⎟⎟⎟⎟⎠
= 𝑒(

1
𝜏
−2)𝑡𝑃3,1(𝑡, 𝜃) + 𝑒(

1
𝜏
−1)𝑡𝐵3,1(𝑡, 𝜃),

which proves that the second derivatives of 𝑓 converge to 0 as (𝑥, 𝑦) →  if 1
𝜏
> 2. Therefore 𝑓 is

2 with ∇2𝑓() = 02×2.
Continuing along the same lines, when differentiating 𝑙 times, the invertible matrix in front of

the 𝑙th order derivatives of 𝑓 has coefficients of the form 𝑍1𝑍2⋯𝑍𝑙 with 𝑍1, … , 𝑍𝑙 ∈ 1 and, after
tedious computations, we obtain

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑙𝑓

𝜕𝑥𝑙

⋮

𝜕𝑙𝑓

𝜕𝑥𝑙−𝑖𝜕𝑦𝑖

⋮

𝜕𝑙𝑓

𝜕𝑦𝑙

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑒(

1
𝜏
−𝑙)𝑡𝑃𝑙+1,1(𝑡, 𝜃) + 𝑒(

1
𝜏
−(𝑙−1))𝑡𝐵𝑙+1,1(𝑡, 𝜃), (3.15)

which converges to 0 as (𝑥, 𝑦) →  as long as 1

𝜏
> 𝑙. Therefore, 𝑓 is 𝑙 and all the 𝑙th order deriva-

tives of 𝑓 are zero at  and we conclude that 𝑓 ∈ 𝑘(ℝ2), where 𝑘 is the biggest integer such that
𝑘 < 1

𝜏
.

Let us nowassume, toward a contradiction, that𝑓 is𝑘+1. Thenwe canwrite a Taylor expansion
of 𝑓 up to the order 𝑘 + 1 at . Since ∇𝑙𝑓() = 0 for 𝑙 ⩽ 𝑘, we obtain that

𝑓(𝑥, 𝑦) = 𝑂(||(𝑥, 𝑦)||𝑘+1) in a neighborhood of , (3.16)
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where 𝑂(𝑟𝑘+1)∕𝑟𝑘+1 is bounded near 0. If 1
𝜏
∉ ℕ, then 𝑘 + 1 > 1

𝜏
, and we obtain a straightforward

contradiction with the first inequality in (3.9). If now 𝑘 + 1 = 1

𝜏
∈ ℕ, then (3.16) is not anymore

contradictory with (3.9). But writing (3.15) with 𝑙 = 𝑘 + 1, we get

⎛⎜⎜⎜⎜⎝
𝜕𝑘+1𝑓

𝜕𝑥𝑘+1

⋮

𝜕𝑘+1𝑓

𝜕𝑦𝑘+1

⎞⎟⎟⎟⎟⎠
= 𝑃𝑘+2,1(𝑡, 𝜃) + 𝑒𝑡𝐵𝑘+2,1(𝑡, 𝜃).

The second termabove converges to zero as 𝑡 → −∞, or equivalently as (𝑥, 𝑦) → , but𝑃𝑘+2,1(𝑡, 𝜃)
is a periodic nonconstant matrix with respect to 𝑡 and 𝜃 so cannot converge as 𝑡 → −∞, contra-
dicting our assumption. This ends the proof. □

4 OSCILLATING GRADIENT TRAJECTORIES

Let us start by showing that maximal gradient orbits blow up in finite positive time (and converge
to the unique minimum  of the convex function 𝑓 as 𝑡 → −∞).

Lemma 4.1 (Gradient trajectories of the convex function). Let 𝑓 be the convex function defined in
Lemma 3.1. Then the ordinary differential equation for the gradient orbits{

𝛾′(𝑡) = ∇𝑓(𝛾(𝑡)), 𝑡 ∈ ℝ,

𝛾(0) = 𝛾0 ∈ ℝ2 ⧵ {}. %
(4.1)

admits a unique maximal solution 𝛾 defined in (−∞, 𝑇) such that

lim
𝑡→−∞

𝛾(𝑡) = 
and 𝛾 blows up in a finite time

𝑇 ⩽
21∕2𝜏

( 1
𝜏
− 2) ‖𝛾0‖ 1

𝜏
−2

(0 < 𝜏 <
1

10
is introduced in (3.2)),

that is,

lim
𝑡↗𝑇

‖𝛾(𝑡)‖ = +∞.

Proof. Since 𝑓 is 𝑘 with 𝑘 ⩾ 2 (Lemma 3.3), there exists a unique maximal solution of (4.1),
denoted by 𝛾 ∈ 𝑘((𝑆, 𝑇)), where−∞ ⩽ 𝑆 < 0 < 𝑇 ⩽ +∞. The function 𝑓 being convex and coer-
cive with a unique minimum at , we infer that 𝑆 = −∞ and 𝛾(𝑡) →  as 𝑡 → −∞. In particular,
𝛾(𝑡) ≠  for every 𝑡 ∈ (−∞,𝑇) and consequently the function 𝑡 ↦ 𝑧(𝑡) ∶= ‖𝛾(𝑡)‖ is differentiable.
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Using the convexity of 𝑓 and (3.9), we deduce

𝑑

𝑑𝑡
‖𝛾(𝑡)‖ = ⟨𝛾′(𝑡), 𝛾(𝑡)‖𝛾(𝑡)‖⟩ = ⟨∇𝑓(𝛾(𝑡)), 𝛾(𝑡)‖𝛾(𝑡)‖⟩ ⩾ 𝑓(𝛾(𝑡))‖𝛾(𝑡)‖ ⩾ 2−

1
2𝜏 ‖𝛾(𝑡)‖ 1

𝜏
−1.

It follows that

‖𝛾(𝑡)‖ ⩾
1(‖𝛾0‖2− 1

𝜏 − 2−
1
2𝜏 ( 1

𝜏
− 2)𝑡

) 𝜏
1−2𝜏

,

where the above right-hand side is the exact solution to the scalar ordinary differential equation
𝑧′(𝑡) = 2−

1
2𝜏 𝑧(𝑡)

1
𝜏
−1, 𝑧(0) = ‖𝛾0‖. We conclude that themaximal solution 𝛾 blows up in finite pos-

itive time. □

In fact, finding gradient orbits is a geometric problem. We seek the unique curve 𝛾 passing
through 𝛾0, which is orthogonal to the level sets of 𝑓. It is convenient to parametrize 𝛾 as

𝛾(𝑠) = 𝑀(𝑡(𝑠), 𝜃(𝑠)) = (𝑋(𝑡(𝑠), 𝜃(𝑠)), 𝑌(𝑡(𝑠), 𝜃(𝑠))), 𝑠 ∈ ℝ (4.2)

using the notations (2.3)–(2.4). Under this parametrization 𝛾(𝑠)∈(𝑡(𝑠)), for every 𝑠 ∈ ℝ and 𝛾′(𝑠)
is a normal vector at 𝛾(𝑠) to the (convex) sublevel set [𝑓⩽𝑓(𝛾(𝑠))] = conv (𝑡(𝑠)). Therefore

𝛾′(𝑠) ⟂ 𝜕𝜃𝑀(𝑡(𝑠), 𝜃(𝑠)), for all 𝑠 ∈ ℝ. (4.3)

We define the rotation angle 𝑠 ↦ 𝛼(𝑠) as the angle between the 𝑥-axis and the secant 𝛾(𝑠)‖𝛾(𝑠)‖ (spher-
ical part of the orbit) varying in a continuous way. Therefore

⎧⎪⎨⎪⎩
cos 𝛼(𝑠) = 𝑋(𝑡,𝜃)√

𝑋(𝑡,𝜃)2+𝑌(𝑡,𝜃)2
,

sin 𝛼(𝑠) = 𝑌(𝑡,𝜃)√
𝑋(𝑡,𝜃)2+𝑌(𝑡,𝜃)2

.

In particular, according to the notation used in (2.3)–(2.5), if 𝜙(𝑠) is the angle in polar coordinates
of the point𝑚(𝑡, 𝜃), then we have (see Figure 1):

𝛼(𝑠) = 𝑡(𝑠) + 𝜙(𝑠), for all 𝑠 ∈ ℝ.

Lemma 4.2 (Spiraling around the origin). Let 𝑓 be the convex function defined in (3.1) under the
assumption (3.2) and let 𝑠 ↦ 𝛾(𝑠) be a maximal orbit of the convex foliation ((𝑡))𝑡∈ℝ. Then the
rotation angle 𝑠 ↦ 𝛼(𝑠) satisfies

lim
𝑠→±∞

𝛼(𝑠) = ±∞. (4.4)

See Figure 3 for a generic numerical simulation of themaximal orbit of the function𝑓 associated
with the convex foliation of Figure 2.
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F IGURE 3 Gradient orbit 𝛾(𝑠) with initial point 𝛾(0) = (2, 0), then zoom and extra-zoom

Proof. We use the parametrization given by (4.2). Since

lim
𝑠→+∞

‖𝛾(𝑠)‖ = +∞ and lim
𝑡→−∞

𝛾(𝑠) = ,
we can assume that the function 𝑠 ↦ 𝑡(𝑠) satisfies

𝑡′(𝑠) > 0 and lim
𝑠→±∞

𝑡(𝑠) = ±∞. (4.5)

The goal is to compute 𝛼(𝑠) using the orthogonality condition (4.3), which is equivalent to⟨
𝛾′(𝑠), 𝜕𝜃𝑀(𝑡(𝑠), 𝜃(𝑠))

⟩
= 0, for all 𝑠 ∈ ℝ. (4.6)

Using the notations of Section 2, we have

𝛾′(𝑠) =
𝑑

𝑑𝑠
𝑀(𝑡(𝑠), 𝜃(𝑠)) = 𝑡′𝜕𝑡(𝑅𝑚) + 𝜃′𝜕𝜃(𝑅𝑚) = 𝑡′(𝑅′𝑚 + 𝑅𝜕𝑡𝑚) + 𝜃′𝑅𝜕𝜃𝑚

and 𝜕𝜃𝑀 = 𝜕𝜃(𝑅𝑚) = 𝑅𝜕𝜃𝑚. It follows⟨
𝛾′(𝑠), 𝜕𝜃𝑀

⟩
= 𝑡′

⟨
𝑅′𝑚, 𝑅𝜕𝜃𝑚

⟩
+ 𝑡′

⟨
𝑅𝜕𝑡𝑚, 𝑅𝜕𝜃𝑚

⟩
+ 𝜃′

⟨
𝑅𝜕𝜃𝑚, 𝑅𝜕𝜃𝑚

⟩
= 𝑡′

⟨
𝑅(
𝜋

2
)𝑚, 𝜕𝜃𝑚

⟩
+ 𝑡′

⟨
𝜕𝑡𝑚, 𝜕𝜃𝑚

⟩
+ 𝜃′‖𝜕𝜃𝑚‖2

= 𝑡′
(
𝑎𝑏 + (𝑏𝑏′ − 𝑎𝑎′) cos 𝜃 sin 𝜃

)
+ 𝜃′

(
𝑎2 sin2 𝜃 + 𝑏2 cos2 𝜃

)
.

By (4.3), we have ⟨𝛾′(𝑠), 𝜕𝜃𝑀⟩ = 0 and after substitution 𝑎(𝑡) =
√
2𝑒𝑡 and 𝑏(𝑡) = 𝑒𝑡, we get

𝑡′𝑒2𝑡(
√
2 − cos 𝜃 sin 𝜃) + 𝜃′𝑒2𝑡(1 + sin2 𝜃) = 0,

whence we deduce the following relation between 𝑡(𝑠) and 𝜃(𝑠):

𝑡′(𝑠) = −
1 + sin2 𝜃(𝑠)√

2 − cos 𝜃(𝑠) sin 𝜃(𝑠)
𝜃′(𝑠). (4.7)

Since for every 𝜃 ∈ ℝ, we have

0 <
1√
2 + 1

2

⩽
1 + sin2 𝜃√
2 − cos 𝜃 sin 𝜃

⩽
2√
2 − 1

2

,
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we get

−
1√
2 + 1

2

𝜃′(𝑠) ⩽ 𝑡′(𝑠) ⩽ −
2√
2 − 1

2

𝜃′(𝑠).

Therefore, from (4.5), we deduce

𝜃′(𝑠) < 0, 𝜃(𝑠) →
𝑠→−∞

+∞, 𝜃(𝑠) →
𝑠→+∞

−∞. (4.8)

Next, we establish the relation between 𝜃(𝑠) and 𝜙(𝑠), see Figure 1. We have

cos 𝜙 =
𝑎 cos 𝜃√

𝑎2 cos2 𝜃 + 𝑏2 sin2 𝜃
=

√
2 cos 𝜃√

2 cos2 𝜃 + sin2 𝜃
,

sin 𝜙 =
𝑏 sin 𝜃√

𝑎2 cos2 𝜃 + 𝑏2 sin2 𝜃
=

sin 𝜃√
2 cos2 𝜃 + sin2 𝜃

.

Differentiating cos 𝜙 and plugging the result in the second expression, we end up with

𝜙′ =

√
2

1 + cos2 𝜃
𝜃′. (4.9)

Assembling (4.7) and (4.9), we obtain

𝛼′ = 𝑡′ + 𝜙′ =

( √
2

1 + cos2 𝜃
−

1 + sin2 𝜃√
2 − cos 𝜃 sin 𝜃

)
𝜃′ =∶ ℎ(𝜃)𝜃′. (4.10)

The function ℎ is analytic and 2𝜋-periodic, see Figure 4. We can expand it in Fourier series and
integrate (4.10) to obtain

𝛼(𝑠) =
𝑎0
2
𝜃(𝑠) + 𝑂(1), (4.11)

where 𝑂(1) is a bounded function and

𝑎0 =
1

𝜋 ∫
2𝜋

0

ℎ(𝜃)𝑑𝜃 ≃ −0.84 < 0.

We finally conclude from (4.11) and (4.5) that (4.4) holds. □

5 PROOF OF THEOREM 1.1

Consider the convex foliation by ellipses {(𝑡)}𝑡∈ℝ given by Lemma 2.1. Let 𝑘 ⩾ 1 be any inte-
ger and 𝑓 be the convex function defined by Lemma 3.1 for 0 < 𝜏 < min{1∕10, 1∕𝑘}. Then, by
Lemma 3.2, the function 𝑓 is coercive, has its unique minimum at the origin , is real analytic in
ℝ2 ⧵ {} and satisfies the Łojasiewicz inequality (1.1). Further, Lemma 3.3, ensures that 𝑓 is 𝑘-
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F IGURE 4 Plot of ℎ(𝜃) =
√
2

1+cos2 𝜃
− 1+sin2 𝜃√

2−cos 𝜃 sin 𝜃

smooth. Finally, Lemma 4.2 asserts that all nontrivial gradient orbits spiral infinitely many times
both near the origin (bounded part) and at infinity.
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