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1 Introduction

Rademacher theorem asserts that a (locally) Lipschitz continuous function f : Rd → R` is differ-
entiable almost everywhere (that is, the derivative df(x) of f exists at every point x ∈ Rd \ N
where N has Lebesgue measure zero). In this paper we study extensions of this result to Lipschitz
continuous set-valued maps F from Rd to R` with nonempty convex compact values. We recall
(see [4], [14], [20] e.g.) that a set-valued map F is called locally Lipschitz at x̄ if for some k ≥ 0 and
all x, x′ in a neighborhood of x̄ it holds:

F (x) ⊂ F (x′) + k |x− x′|B,

where B is the closed unit ball of R`. A special type of set-valued maps are the so-called convex
processes (see [18], [19]). A set-valued map L : Rd ⇒ R` is called a convex process, if its graph is
a closed convex cone in Rd × R`, or equivalently, if 0 ∈ L(0) and for every x, y ∈ Rd and λ > 0 it
holds:

L(x+ y) ⊂ L(x) + L(y) and L(λx) = λL(x). (1.1)

Convex processes are relevant in many applications in control and optimization (see [1], [3], [13] e.g.
or the classical monographs [4], [14], [20]). They are considered as set-valued analogues of linear
continuous operators; we refer the reader to [4, Chapter 2] for a discussion on this fact. We hereby
use this notion to define differentiability of a set-valued map: indeed, we say that F is differentiable
at (x, y) ∈ Rd×R` with y ∈ F (x) if the graphical derivative of F is a convex process (see forthcoming
Definition 3.3).

Let us mention for completeness that an alternative notion of differentiability of set-valued maps,
called H-differentiability, has been introduced in [15] and studied in [7], [10]. The notion of H-
differentiability is based on the (less restrictive) positively homogeneous set-valued operators (which
are not necessarily convex processes) and its main drawback is that it leads to conic approximations
of F that need not be unique (see discussion in [7, Section 2.3]).

The manuscript is organized as follows: in the next section we fix our notations and give the main
definitions and preliminary results. Section 3 is dedicated to differentiability of set-valued maps
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and its relation with the case of differentiability of functions. In Section 4 we obtain an extension
of Rademacher theorem for the class of set-valued maps that are generated by a finite number
of pointwise affinely independent Lipschitz functions (Proposition 4.1). This result recovers the
classical Rademacher theorem as a special case. In Section 5 we obtain a general differentiability
result (Theorem 5.5) for the class of isotropically Lipschitz functions (Definition 5.2) with convex
compact values with nonempty interior and smooth boundary.

2 Preliminaries

Throughout this work, we denote by |x| the Euclidean norm of an element x ∈ Rd, and by BX :=
{x ∈ Rd : |x| ≤ 1} the closed unit ball, centered at the origin of the normed space X. The index will
often be omitted if there is no ambiguity about the space. We set Bδ(x) := x+ δBX for the closed
ball centered at x with radius δ > 0. We also denote by 〈p, x〉 the scalar product of the elements
x, p ∈ Rd and we identify Rd with its dual space (the space of all linear functions from Rd to R) by
means of the relation p(x) := 〈p, x〉, for all x ∈ Rd. Given a sequence (tn)n≥1 of real numbers, we
shall use the notation tn ↘ 0+ to indicate that tn > 0 and lim

n→∞
tn = 0.

Let us further denote by Ld the Lebesgue measure of Rd. A set A ⊂ Rd is said to have a full
measure in Rd if its complement is contained in a null set, that is, Rd�A ⊂ N with Ld(N ) = 0. If
a property holds for all points of a full-measure set A, then we say that the property holds almost
everywhere (in short, a.e.) or for almost all x ∈ Rd (in short, ∀a.e.x ∈ Rd) and omit the explicit
reference to the set A.

A function f : Rd −→ R` is called locally Lipschitz continuous at x̄ ∈ Rd if there exists k ≥ 0
such that for all x, x′ in some neighborhood of x̄ it holds:

f(x)− f(x′) ≤ k |x− x′|. (2.1)

We say that f is locally Lipschitz, if it is locally Lipschitz at every point of its domain. In particular,
if (2.1) holds for all x, x′ ∈ Rd, then we say that f is k-Lipschitz continuous. We use the notation
df(x) to denote the (Fréchet) derivative of f at x (whenever it exists). Notice that df(x) is a linear
function from Rd to R` (linear approximation of f aroung x) and its graph is an affine subspace of
Rd × R` passing through (x, f(x)).

In this classical setting, let us recall the following well-known result (see [9], [8] e.g.).

(Rademacher theorem) Every locally Lipschitz function f : Rd → R` is a.e. differentiable.

Set-valued maps are tightly related to nonsmooth phenomena and have been widely used in problems
in calculus of variations, control and optimization (see [10], [11], [12], [16], [17] e.g.). For a set-valued
map F from Rd to R`, we will use the notation F : Rd ⇒ R`. The graph of F is defined as follows:

gph(F ) := {(x, y) ∈ Rd × R` : y ∈ F (x) }.

A set-valued map F is called locally Lipschitz at x̄ (or k-Lipschitz around x̄) if for some k ≥ 0 and
all x, x′ in a neighborhood of x̄ it holds:

F (x) ⊂ F (x′) + k |x− x′|B. (2.2)

Similarly to the case of (single-valued) functions, a set-valued map F is called locally Lipschitz, if
it is locally Lipschitz at every x̄ ∈ Rd. Moreover, if (2.2) holds for all x, x′ ∈ Rd, then we say that
F is k-Lipschitz. It is easily seen that every locally Lipschitz map has closed graph.
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Before we proceed further, let us recall that for a closed set K ⊂ Rm and x̄ ∈ K the tangent (or
contingent) cone is defined as follows (see [4], [14], [20] e.g.)

TK(x̄) := {u ∈ Rm : ∃(hn)↘ 0+, ∃(un)n → u such that x̄+ hnun ∈ K, ∀n ≥ 0 }. (2.3)

It follows easily from the definition that TK(x̄) is a nonempty closed cone of Rm.

A nonempty set K is called convex if the segments [x, y] := {tx+ (1− t)y : t ∈ [0, 1]} are contained
in K, for all x, y ∈ K. The set K is called strictly convex if, in addition, the open segments
(x, y) := {tx+ (1− t)y : t ∈ (0, 1)} are contained in the interior intK of K, for every x, y ∈ K with
x 6= y. Therefore, assuming that a set K with at least two elements is strictly convex, implicitly
yields that intK 6= ∅.
A function f : Rd → R ∪ {+∞} is called convex, if its epigraph epif := {(x, β) : β ≥ f(x)} is a
convex subset of Rd+1, or equivalently, if for all x, y ∈ domf := {u ∈ Rd : f(u) ∈ R} and t ∈ [0, 1]
we have f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). The function f is called strictly convex, if whenever
x 6= y and t ∈ (0, 1) it holds f(tx+ (1− t)y) < tf(x) + (1− t)f(y) (that is, the graph of f does not
contain segments). Given x ∈ domf , we define the convex subdifferential ∂f(x) as follows:

∂f(x) := {p ∈ Rd : f(y) ≥ f(x) + 〈p, y − x〉, for all y ∈ Rd}.

It is well-known that if the convex function f is differentiable at x, then ∂f(x) = {df(x)} (using
the identification of Rd with its dual space).

We finally recall that vectors {V1, . . . , VN} ⊂ Rd are called affinely independent, if for every
{µi}Ni=1 ⊂ R it holds:

N∑
i=1

µi = 0 and

N∑
i=1

µiVi = 0 =⇒ µ1 = . . . = µN = 0.

Notice that this is equivalent to the fact that the family {Vi − VN}N−1
i=1 is linearly independent and

yields that N ≤ d+ 1.

3 Graphical derivative and differentiability of set-valued maps

It is natural to apply the notion of tangent cone to the graph of a set-valued map in order to
obtain a linearization of a set-valued map around a point of its graph. This is achieved by setting
K = gph(F ) (assuming closed) and taking the tangent cone at a point (x, y) ∈ gph(F ). We formalize
this in the following definition (see [4]).

Definition 3.1 (graphical derivative). Let F : Rd ⇒ R` be a set-valued map with closed graph.
The graphical derivative of F at (x̄, ȳ) ∈ gph(F ) is a set-valued map DF (x̄, ȳ) : Rd ⇒ R` whose
graph is the tangent cone at (x̄, ȳ) of the graph of F , that is:

gph(DF (x̄, ȳ)) := Tgph(F )(x̄, ȳ).

In view of the above definition, taking into account (2.3) we deduce easily that for every u ∈ Rd:

DF (x̄, ȳ)(u) := {v ∈ R` : ∃(hn)↘ 0+, ∃(un, vn)n → (u, v) : ȳ + hnvn ∈ F (x̄+ hnun), ∀n } (3.1)

In case of a locally Lipschitz (set-valued) map, the graphical derivative has two interesting properties:
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Lemma 3.2 (graphical derivative of a Lipschitz map). Assume that F : Rd ⇒ R` is k-Lipschitz at
x̄ and pick any ȳ ∈ F (x̄).

(i). The graphical derivative DF (x̄, ȳ) admits a simplified formula:

DF (x̄, ȳ)(u) := {v ∈ R` : ∃(hn)↘ 0+, ∃(wn)n → v : ȳ + hnwn ∈ F (x̄+ hnu), ∀n }. (3.2)

(ii). For any u ∈ Rd, we have
DF (x̄, ȳ)(u) ∩ k |u|B 6= ∅.

Proof. Let us prove (i). A mere comparison with (3.1) shows that the right-hand side of (3.2)
is contained in DF (x̄, ȳ)(u). To prove the converse inclusion take (u, v) ∈ gph (DF (x̄, ȳ)) . Then,
according to (3.1), there exist sequences ∃(hn) ↘ 0+, (un)n → u and (vn)n → v such that
ȳ+hnvn ∈ F (x̄+hnun) for all n ≥ 1. Since F is k-Lipschitz, we deduce from (2.2) that F (x̄+hnun) ⊂
F (x̄+ hnu) + khn|u− un|B. In particular, there exists a sequence (bn)n ⊂ B such that for all n ≥ 1
we have:

ȳ + hn(vn + k|un − u|bn) ∈ F (x̄+ hnu).

Set wn := vn + k|un − u|bn so that ȳ + hnwn ∈ F (x̄ + hnu) for all n ≥ 1. Noticing that (wn)n
converges to v as n→∞ yields (3.2).

Let us now prove (ii). Fix u ∈ Rd and (hn)↘ 0+. By Lipschitz continuity of F we deduce:

ȳ ∈ F (x̄) ⊂ F (x̄+ hnu) + k hn |u|B.

Therefore, there exists a sequence (bn)n ⊂ B such that ȳ + k hn |u| bn ∈ F (x̄ + hnu) for all n ≥ 1.
Since B is compact, passing eventually to a subsequence, we may assume that bn → b ∈ B and
wn := k |u| bn → k |u| b := v. Since ȳ + hnwn ∈ F (x̄ + hnu) we deduce directly from (3.2) that
v ∈ k |u|B ∩DF (x̄, ȳ)(u).

The proof is complete. 2

Now we are ready to define an appropriate notion of differentiability of a set-valued map.

Definition 3.3 (Differentiability of a set-valued map). A set-valued map F : Rd ⇒ R` with closed
graph is said to be differentiable at (x̄, ȳ) ∈ gphF if its graphical derivative DF (x̄, ȳ) is a convex
process (see (1.1)).

In other words, F is differentiable at (x̄, ȳ) ∈ gphF if the closed cone Tgph(F )(x̄, ȳ) is also convex,
which means that DF (x̄, ȳ) is a set-valued map whose graph is a closed convex cone.

Definition 3.3 follows the spirit of [5], but it is purely geometrical and guarantees that the derivative
is unique (whenever it exists). Moreover, it generalizes the classical differentiability of Lipschitz
functions, as forthcoming Proposition 3.5 will underline. Let us first state the following lemma.

Lemma 3.4. Assume that for some f : Rd −→ R` and x̄ ∈ Rd we have:

kx̄ := lim sup
x→x̄

|f(x)− f(x̄)|
|x− x̄|

< +∞ (3.3)

Then setting F (x) = {f(x)}, for all x ∈ Rd (ie. f is identified to a set-valued map F ), we have:

(i). DF (x̄, f(x̄))(u) 6= ∅, for every u ∈ Rd ; and

(ii) for all (u, v) ∈ gph(DF (x̄, f(x̄))) it holds: |v| ≤ kx̄ |u|.
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Proof. Let u ∈ Rd and (hn)↘ 0+. We deduce from (3.3) that for n sufficiently large:

wn :=
f(x̄+ hnu)− f(x̄)

hn
∈ (1 + kx̄)B.

Since the sequence (wn)n is bounded, passing to a subsequence we may assume that it converges
to some v ∈ R`. Since f(x̄) + hnwn = f(x̄ + hnu) ∈ F (x̄ + hnu) we conclude from (3.2) that
v ∈ DF (x̄, f(x̄))(u) and (i) holds.

To prove (ii), fix (u, v) ∈ gph(DF (x̄, f(x̄))) and consider the associated sequences (hn) ↘ 0+ and
(un, vn)n → (u, v) such that f(x̄) + hnvn = f(x̄ + hnun). In view of (3.3), passing possibly to
subsequences, we deduce that there exists a sequence of positive numbers εn → 0+ such that

|vn| =
|f(x̄+ hnun)− f(x̄)|

hn
≤ (kx̄ + εn)|un|, ∀n ≥ 0.

Passing to the limit we obtain |v| ≤ kx̄ |u| as desired. 2

Notice that every Lipschitz function at x̄ satisfies (3.3). Notice that in Lemma 3.4, f is considered
both as a (single-valued) function and as a set-valued map with singleton values, and consequently
we can define the usual (Fréchet) derivative and the graphical derivative. The following proposition
clarifies the relation between these two objects.

Proposition 3.5 (compatibility). Let f : Rd −→ R` satisfy (3.3) at x̄ ∈ Rn. Then f is differentiable
at x̄ if and only if the map F (x) = {f(x)} is differentiable at (x̄, f(x̄)). In this case, it holds

gph(DF (x̄, f(x̄))) = gph(df(x̄)).

Proof. Let us first assume that f is differentiable at x̄, that is,

lim
|z|→0

|f(x̄+ z)− f(x̄)− df(x̄)(z)|
|z|

= 0. (3.4)

Then it follows easily from (3.2) that for any u ∈ Rd it holds df(x̄)(u) ∈ DF (x̄, ȳ)(u), therefore
gph(df(x̄)) ⊂ gph(DF (x̄, f(x̄))). Let now v ∈ DF (x̄, f(x̄))(u). It follows from (3.1) that there exist
sequences (hn)↘ 0+ and (un, vn)n → (u, v) such that f(x̄) +hnvn ∈ F (x̄+hnun) = {f(x̄+hnun)},
for all n ≥ 1. It follows readily that

vn =
f(x̄+ hnun)− f(x̄)

hn
.

In view of (3.4), taking the limit as n→∞ we obtain v = df(x̄)(u), yielding the equality

gph(DF (x̄, f(x̄))) = gph (df(x̄)) .

The above ensures the differentiability of F at (x̄, f(x̄)), since gph (df(x̄)) is a linear subspace of
Rd × R` and consequently a closed convex cone.

Let us now assume that F is differentiable at (x̄, f(x̄)), that is, DF (x̄, f(x̄)) is a convex process
and consequently gph (DF (x̄, f(x̄))) is a closed convex cone. We are going to prove successively
that gph (DF (x̄, f(x̄))) is the graph of some linear function L from Rd to R` and then that L is the
Fréchet derivative of f at x̄.
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To this end, fix (u, v) ∈ gph(DF (x̄, f(x̄))). We claim that

DF (x̄, f(x̄))(−u) = {−v}. (3.5)

In view of Lemma 3.4(ii), this is clear when u = 0, therefore, we may assume u 6= 0. Let w ∈
DF (x̄, f(x̄))(−u) and notice that (u, v) and (−u,w) are two points of the convex set gph (DF (x̄, f(x̄))).
It follows that

1

2
[(u, v) + (−u,w)] = (0,

1

2
(v + w) ∈ DF (x̄, f(x̄)),

which again in view of Lemma 3.4(ii) yields v+w = 0 and (3.5) follows. Moreover, since this is true
for any u ∈ Rd, we conclude that the set DF (x̄, f(x̄))(u) reduces to the singleton {v}. We claim
that for every u the directional derivative

lim
t→0

f(x̄+ tu)− f(x̄)

t
(3.6)

exists and is equal to v. Indeed let tn ↘ 0+ and observe that for n sufficiently large the sequence

vn :=
f(x̄+ tnu)− f(x̄)

tn

is contained in the ball B(0, 1 + kx̄) therefore it has accumulation points, which all belong to
DF (x̄, f(x̄))(u) = {v}. This proves that vn → v and that the directional limit in (3.6) exists when
t → 0+ and is equal to DF (x̄, f(x̄))(u). Changing u into −u we obtain that the corresponding
directional limit also exists and it is equal to −Df(x̄, f(x̄))(−u), which in turn, in view of (3.5), is
equal to DF (x̄, f(x̄))(u). It remains to show that the linear function

Rd 3 u 7→ L(u) := v ∈ Rd where DF (x̄, f(x̄))(u) = {v},

is the derivative of f at x̄ namely:

lim
|z|→0+

|f(x̄+ z)− f(x̄)− L(z)|
|z|

= 0.

Let us assume, towards a contradiction, that this is not the case. Then there exist α > 0 and a
sequence (zn)→ 0, with zn 6= 0 for all n ≥ 1 such that

|f(x̄+ zn)− f(x̄)− L(zn)|
|zn|

≥ α, ∀n ≥ 0. (3.7)

The sequence un := zn/|zn| is bounded and converges (up to a subsequence) to some u ∈ Rd.
Moreover, using (3.3) for n sufficiently large we obtain∣∣∣∣f(x̄+ zn)− f(x̄)− L(zn)

zn

∣∣∣∣ =

∣∣∣∣f(x̄+ |zn|un)− f(x̄)

|zn|
− L(un)

∣∣∣∣ ≤ ∣∣∣∣f(x̄+ |zn|u)− f(x̄)

|zn|
− L(u)

∣∣∣∣
+
|f(x̄+ |zn|un)− f(x̄+ |zn|u)|

|zn|
+ |L(u)− L(un)|

≤
∣∣∣∣f(x̄+ |zn|u)− f(x̄)

|zn|
− L(u)

∣∣∣∣ + (1 + kx̄) |un − u| + ‖L‖ |u− un|
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where ‖L‖ denotes the operator norm of the linear map L. Passing to the limsup to the above
inequalities and taking into account that

un → u and lim
n

f(x̄+ |zn|u)− f(x̄)

|zn|
= L(u)

we obtain

lim sup
n

|f(x̄+ zn)− f(x̄)− L(zn)|
|zn|

≤ 0

which contradicts (3.7). Therefore, L(u) = df(x̄)(u) and DF (x̄, f(x̄))(u) = {df(x̄)(u)}.
The proof is complete. 2

4 Set-valued maps generated by a finite family

In this section we consider a particular type of set-valued maps F : Rd ⇒ R`, namely those generated
by a finite family of locally Lipschitz functions, that is,

F (x) = conv{f1(x), . . . , fN (x)}

where fi : Rd → R` is a (locally) Lipschitz function, for all i ∈ {1, . . . , N}. It is easy to see that
F : Rd ⇒ R` is Lipschitz continuous (as set-valued function) with nonempty convex compact values.
We shall further assume that for every x ∈ Rd the family {f1(x), . . . , fN (x)} is affinely independent.
This assumption yields in particular that N ≤ `+ 1. Moreover, setting

∆ :=

(λ1, . . . , λN ) ∈ [0, 1]N :

N∑
j=1

λj = 1

 ,

we have a unique representation of every y ∈ F (x), that is, there exist unique (λ1, . . . , λN ) ∈ ∆

such that y =
N∑
j=1

λjfj(x).

We are now ready to state the following generalization of Rademacher theorem for this type of
set-valued maps.

Proposition 4.1 (generalized Rademacher theorem). Let fi : Rd → R`, i ∈ {1, . . . , N} be a family
of Lipschitz continuous functions for which {f1(x), . . . , fN (x)} are affinely independent for every
x ∈ Rd. Then the set-valued map F : Rd ⇒ R` given by

F (x) = conv {f1(x), . . . , fN (x)}, x ∈ Rd,

is differentiable at (x̄, ȳ) for a.e. x̄ ∈ Rd and all ȳ ∈ F (x). In particular, for every u ∈ Rd

DF (x̄, ȳ)(u) =
N∑
j=1

λ̄j dfj(x̄)(u) + TF (x̄)(ȳ),

where (λ̄1, . . . , λ̄N ) ∈ ∆ are such that

ȳ =
N∑
j=1

λ̄j fj(x̄). (4.1)
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Proof. Let us denote by D ⊂ Rd the set of points of common differentiability of the functions fi,
i ∈ {1, . . . , N} (by Rademacher theorem this set is of full measure) and let us fix x̄ ∈ D, ȳ ∈ F (x̄)
and u ∈ Rd . Let further w ∈ DF (x̄, ȳ)(u). Then there exist (wn)n → w and (tn)↘ 0+ such that

ȳ + tnwn ∈ F (x̄+ tnu).

Then for every n ≥ 1 there exists (λn1 , . . . , λ
n
N ) ∈ ∆ such that

ȳ + tnwn =
N∑
j=1

λnj fj(x̄+ tnu). (4.2)

Thanks to the compactness of ∆, passing to a subsequence, we may assume that

(λn1 , . . . , λ
n
N )→ (λ∗1, . . . , λ

∗
N ), as n→∞.

For every j ∈ {1, . . . , N}, the first-order Taylor series of fj at x̄ yields:

fj(x̄+ tnu) = fj(x̄) + tn dfj(x̄)(u) + oj(tnu), where lim
|v|→0

oj(v)

|v|
= 0. (4.3)

Replacing (4.1), (4.3) into (4.2) we obtain:

tnwn =
N∑
j=1

(
λnj − λ̄j

)
fj(x̄) + tn

N∑
j=1

λnj dfj(x̄)(u) + tn ||u||
N∑

nj=1

λnj

(
oj(tnu)

||tnu||

)
, (4.4)

and passing to the limit as n→∞ we deduce:

N∑
j=1

(
λ∗j − λ̄j

)
fj(x̄) = 0, yielding λ∗j = λ̄j , for all j ∈ {1, . . . , N}.

Returning to (4.2), we deduce easily that:

wn =

N∑
j=1

λnj

(
fj(x̄+ tnu)− fj(x̄)

tn

)
+

1

tn

 N∑
j=1

λnj fj(x̄)− ȳ

 . (4.5)

Noticing that

1

tn

 N∑
j=1

λnj fj(x̄)− ȳ

 ∈ R+ (F (x̄)− ȳ) ⊂ TF (x̄)(ȳ)

and taking the limit in (4.5) as n→∞ we deduce that

w = lim
n→∞

wn ∈
N∑
j=1

λ̄jdfj(x̄)(u) + TF (x̄)(ȳ).

For the reverse inclusion, it suffices to prove that for every u ∈ Rd we have:

N∑
j=1

λ̄jdfj(x̄)(u) + R+ (F (x̄)− ȳ) ⊂ DF (x̄, ȳ)(u).
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To this end, fix µ ≥ 0, (λ1, . . . , λN ) ∈ ∆ and define

v = µ

(
N∑
k=1

λk fk(x̄)− ȳ

)
(arbitrary element of R+ (F (x̄)− ȳ) ).

Let further (tn)↘ 0+ and set

wn :=
1

tn

(1− µtn)
N∑
j=1

λ̄j fj(x̄+ tnu) + µtn

N∑
k=1

λk fk(x̄+ tnu)− ȳ

 . (4.6)

Since F (x̄+ tnu) is convex, the above definition yields

ȳ + tnwn ∈ F (x̄+ tnu), for all n sufficiently large. (4.7)

Replacing ȳ in (4.6) by its representation given in (4.1) we deduce:

wn := (1− µtn)
N∑
j=1

λ̄j

(
fj(x̄+ tnu)− fj(x̄)

tn

)
+ µ

(
N∑
k=1

λk fk(x̄+ tnu)− ȳ

)
.

Taking the limit as n→∞ we obtain:

w := lim
n→∞

wn =
N∑
j=1

λ̄j dfj(x̄)(u) + v,

and consequently, in view of (4.7)

w = lim
n→∞

wn ∈ DF (x̄, ȳ)(u)

as desired. The proof is complete. 2

Remark 4.2. Taking N = 1 in Proposition 4.1 we recover the classical Rademacher theorem.

5 A Rademacher Theorem for isotropically Lipschitz maps

In this section we deal with general set-valued maps for which we do not dispose a concrete descrip-
tion. Let us first notice that if a Lipschitz set-valued map F : Rd ⇒ R` has closed convex values
with nonempty interior, then differentiability of F at (x, y) for every x ∈ Rd and for a.e. y ∈ F (x)
(with respect to the L`-measure of F (x)) is straightforward. Indeed, for every y ∈ intF (x) we have
gph (DF (x, y)) = Rd × R` and the boundary ∂F (x) is a null subset of the convex set F (x). In this
case, the interesting part is clearly the behavior of F around boundary points y ∈ ∂F (x) which is
what we are going to investigate in the forthcoming Theorem 5.5.

Let F : Rd ⇒ R` be a Lipschitz set-valued map with nonempty compact values. For every p ∈ R`
we set:

σF (x)(p) := max
y∈F (x)

〈p, y〉 and Y (x, p) := {y ∈ F (x) : 〈p, y〉 = σF (x)(p)}.
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Notice that Y (x, p) is a nonempty compact subset of R` and that the function p 7→ σF (x)(p) is
convex and Lipschitz continuous. It is also easy to verify that

(x, p) 7→ σF (x)(p) is (locally) Lipschitz continuous,

while the set-valued function (x, p) ⇒ Y (x, p) is continuous, but in general not Lipschitz continuous,
as shows the following example.

Example 5.1. Consider the real valued functions

φ0(u) :=

{
u2 − u, if u ≤ 0

u2, if u > 0,

and for τ > 0:

φτ (u) :=


u2 − u+ τ, if u ≤ 0

−u
√
τ + τ, if u ∈ [0,

√
τ ],

u2 − τ, if u >
√
τ ,

We define F : [−1, 1] ⇒ R2 by

F (x) = epiφ|x| ∩ (R× [−2, 2]).

Then F is Lipschitz continuous with compact convex values (with a slight modification we can obtain
that F (x) is strictly convex, but for p̄ = (0,−1), the (single-valued) map x→ Y (x, p̄) := {(

√
|x|, 0)}

is not Lipschitz continuous.

The above example motivates the following definition.

Definition 5.2 (isotropically Lipschitz map). Let F : Rd ⇒ R` be a set-valued map with nonempty
convex compact values. We say that F is (locally) isotropically Lipschitz continuous, if (for every
x̄ ∈ Rd) there exists k > 0 such that for all p ∈ R` and all x, x′ (in a neighborhood of x̄) it holds:

Y (x, p) ⊂ Y (x′, p) + k |x− x′|B. (5.1)

The following result holds.

Proposition 5.3 (isotropically Lipschitz vs Lipschitz). Every (locally) isotropically Lipschitz map
F : Rd ⇒ R` is (locally) Lipschitz.

Proof. Let F be k-isotropically Lipschitz around x̄ ∈ Rd and let us assume, towards a contradiction,
that F is not k-Lipschitz there. Then there exist sequences (xn)n, (x′n)n converging to x̄ and
zn ∈ F (xn) such that zn /∈ F (x′n) + k |xn − x′n|B. Denoting by z′n the projection of zn onto the
convex compact set F (x′n) and setting

pn =
zn − z′n
|zn − z′n|

we deduce that z′n ∈ Y (x′n, pn) and

〈pn, zn − z′n〉 = |zn − z′n| > k |xn − x′n|.

10



Then for every yn ∈ Y (xn, pn) ⊂ F (xn) one has:

|yn − z′n| ≥ 〈pn, yn − z′n〉 ≥ 〈pn, zn − z′n〉 = |zn − z′n| > k |xn − x′n|.

The above clearly yields
z′n /∈ Y (xn, pn) + k |xn − x′n|B

contradicting (5.1). 2

Remark 5.4. (i). If F is a (single-valued) function, then the notions of isotropic Lipschitz continuity
and Lipschitz continuity coincide.

(ii). If F is isotropically Lipschitz and has strictly convex values, then for every p ∈ S`−1 the
set-valued map

x⇒ [Y (x,−p), Y (x, p)]

is Lipschitz. (Notice that strict convexity of F (x) guarantees that both Y (x, p) and Y (x,−p) are
singletons, so that [Y (x,−p), Y (x, p)] is a closed segment in R`.)

We shall show that locally isotropically Lipschitz set-valued maps having strictly convex values
with nonempty interior satisfy a Rademacher-type result. Before going further, let us make some
comments about this last assumption.

(A). Fix x̄ ∈ Rd and set K = F (x̄) ⊂ R`. Since the strictly convex compact set K has nonempty
interior, its boundary ∂K is locally the graph of a (strictly) convex Lipschitz function g : R`−1 7→ R,
that is, for every y0 ∈ ∂K there exists a (strictly) convex Lipschitz function g and ε > 0 such that

∂K ∩B(y0, ε) = gph(g) ∩B(y0, ε).

It follows that every y ∈ ∂K ∩B(y0, ε) can be represented in local coordinates as y = (ξ, g(ξ)) and
that for a.e. ξ ∈ R`−1 (with respect to the Lebesgue measure of R`−1) the gradient ∇g(ξ) exists
and therefore

NK((ξ, g(ξ)) = R+(∇g(ξ),−1).

Since both the projection π(y) = π(ξ, g(ξ)) = ξ ∈ R`−1 and its inverse π−1(ξ) = (ξ, g(ξ)) are
Lipschitz continuous, we get a bi-Lipschitz bijection between ∂K ∩ B(y0, ε) and gph(g) ∩ B(y0, ε)
and conclude that these sets have the same null subsets (in the sense that they are identified through
this bijection). We say that a subset N of ∂F (x̄)) is null, if for every y0 ∈ ∂F (x̄) the set N ∩B(y0, ε)
is identified to a null subset of R`−1 by some bi-Lipschitz bijection. Similarly, we say that a subset
A ⊂ F (x̄) is of full measure in ∂F (x̄), if ∂F (x̄) \ A is null. (Notice that although there is no
canonical way to define a measure on ∂F (x̄), null sets and sets of full measure are unambiguously
determined in ∂F (x̄).) In what follows, we say that a property holds a.e. on ∂F (x̄) if it holds for
all y ∈ ∂F (x̄) \ N where N is a null subset of ∂F (x̄).

Therefore for a.e ȳ ∈ ∂F (x̄) we have N∂F (x̄)(ȳ) = Rp̄ and ȳ = Y (x̄, p̄), which means that ȳ is a
point of smoothness of the boundary of ∂F (x̄) and

Mx̄ := {ȳ ∈ ∂F (x̄) : dim N∂F (x̄)(ȳ) = 1 } (5.2)

has a full measure in ∂F (x̄).
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(B). Thanks to the assumption of strict convexity of F (x̄), the mapping

yx̄ : p ∈ S`−1 7→ Y (x̄, p)

is single-valued. It is also clearly onto ∂F (x̄) (for every y0 ∈ ∂F (x̄), use Hahn-Banach theorem to
separate y0 ∈ ∂F (x̄) from intF (x̄)). Set

Mx̄ := {p ∈ S`−1 : y−1
x̄ (yx̄(p)) = {p}} = {p ∈ S`−1 : yx̄(p) ∈Mx̄}.

Then p 7→ yx̄ is a bijection from Mx̄ onto Mx̄ and N∂F (x̄)(yx̄(p)) = R+p for all p ∈ Mx̄. Notice

further that Mx̄ is of full-measure in ∂F (x̄) and Mx̄ is of full-measure in S`−1. Moreover, for
any full-measure subset P of S`−1, the set yx̄(S`−1\P ) is null in ∂F (x̄) and Mx̄�yx̄(S`−1\P ) is of
full-measure in ∂F (x̄).

We are now ready to state a Rademacher type result for isotropically Lipschitz set-valued maps.

Theorem 5.5 (Rademacher result for isotropically Lipschitz maps.). Let F : Rd ⇒ R` be a locally
isotropically Lipschitz set-valued map with strictly convex values of nonempty interior. Then for
a.e. x̄ ∈ Rd (with respect to the Ld-Lebesgue measure of Rd) and for a.e. ȳ ∈ ∂F (x̄), the map F is
differentiable at (x̄, ȳ) and moreover,

gph(DF (x̄, ȳ)) is a half-space.

Proof. The mapping (x, p) 7→ σF (x)(p) is Lipschitz. By Rademacher theorem, there exists a set

D̂ ⊂ Rd×R` of full measure such that for any (x, p) ∈ D̂ the derivative ∇σF (x)(p) exists. By Fubini
theorem, and using the homogeneity of σ with respect to p we deduce the existence of a full measure
subset D ⊂ Rd such that for any x ∈ D the set

{p ∈ S`−1 : (x, p) ∈ D̂} has a full measure in S`−1.

Fix x̄ ∈ D and set

Px̄ := {p ∈ S`−1 : (x, p) ∈ D̂} (which has full-measure in S`−1).

Recalling the definition of Mx̄ from (5.2) we set

M̂x̄ =Mx̄�yx̄(S`−1\Px̄) (which has full-measure in ∂F (x̄)).

Fix ȳ ∈ M̂x̄ and set p̄ = y−1
x̄ (ȳ) (i.e. Y (x̄, p̄) = {ȳ}). Set

Cx̄,ȳ := { (u,w) ∈ Rd × R` : ∇xσF (x̄)(p̄)(u) ≥ 〈p̄, w〉 }

which is a closed half-space. We are going to prove that

Tgph(F )(x̄, ȳ) = Cx̄,ȳ (5.3)

which immediately yields that the graphical derivative is convex (a half-space in Rd × R`) and
consequently F is differentiable at (x̄, ȳ), according to Definition 3.3.

To this end, take (u,w) ∈ Tgph(F )(x̄, ȳ). In view of Proposition 5.3 and (3.2), there exist sequences
tn ↘ 0+ and wn → w such that ȳ ∈ F (x̄+ tnu)− tnwn.
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For p̄ = y−1
x̄ (ȳ), we have Y (x̄, p̄) = {ȳ} and

σF (x̄)(p̄) = 〈p̄, ȳ〉 ≤ σF (x̄+tnu)(p̄)− tn〈p̄, wn〉, yielding
σF (x̄+tnwn)(p̄)− σF (x̄)(p̄)

tn
≥ 〈wn, p̄〉.

Therefore, ∇xσF (x̄)(p̄)(u) ≥ 〈p̄, w〉 and the inclusion Tgph(F )(x̄, ȳ) ⊂ Cx̄,ȳ follows.

For the opposite inclusion, since Tgph(F )(x̄, ȳ) is closed cone, it suffices to show that

intCx̄,ȳ ⊂ Tgph(F )(x̄, ȳ).

To this end, let (u,w) ∈ Rd × R` be such that

∇xσF (x̄)(p̄)(u) > 〈p̄, w〉. (5.4)

We may also assume that w /∈ Rp̄ (if w ∈ Rp̄ then we replace w by another vector w̃ /∈ Rp̄
arbitrarily close to it). Let us assume by contradiction that (u,w) /∈ Tgph(F )(x̄, ȳ). Then by a
standard argument (see [16] e.g.)

∃δ > 0, ∀τ ∈ (0, δ) : (ȳ + τw + τδB) ∩ F (x̄+ τu) = ∅. (5.5)

Let us first prove that u 6= 0. Indeed if u = 0, then ∇xσF (x̄)(p̄)(u) = 0 > 〈p̄, w〉 and (ȳ + τw +
τδB) ∩ F (x̄) = ∅ for all τ ∈ (0, δ). Therefore w /∈ TF (x̄)(ȳ), which is the half-space [p̄ ≤ 0] because
∂F (x̄) is smooth at ȳ and intF (x̄) 6= ∅. This contradicts the assertion 〈p̄, w〉 < 0.

Set {
e1 := w − 〈p̄, w〉 p̄
e2 := −p̄ and Z := span{e1, e2}. (5.6)

We deduce from (5.5) that[
{(ȳ + τw + τδB)− Y (x̄+ τu, p̄)} ∩ Z

] ⋂ [
{F (x̄+ τu)− Y (x̄+ τu, p̄)} ∩ Z

]
= ∅. (5.7)

Let us further set:

Kτ := {F (x̄+ τu)− Y (x̄+ τu)} ∩ Z and K0 := {F (x̄)− Y (x̄)} ∩ Z,

and define, for every τ ∈ [0, δ) the function φτ : R 7→ R ∪ {+∞} as follows:

φτ (t) := inf{β ≥ 0, te1 + βe2 ∈ Kτ}, t ∈ R.

Note that φτ is convex with φτ (0) = 0 and φτ (t) > 0 when t 6= 0. Since F is Lipschitz, we have

(F (x̄+ τu)− Y (x̄+ τu, p̄)) −→
τ→0

F (x̄)− Y (x̄, p̄) (in the Painlevé-Kuratowski sense)

and consequently epi(φτ ) converges to epi(φ0) as τ → 0 in the Painlevé-Kuratowski sense. Therefore,
by Attouch Theorem (see [6, Theorem 2.1] e.g., or [2]) we get

gph (∂φτ ) −→
τ→0

gph (∂φ0) (in the Painlevé-Kuratowski sense). (5.8)

If (−α, α) ∈ domφ0 := {t ∈ R : φ0(t) < +∞}, for some α > 0, then for all α1 ∈ (0, α) there exists
τ0 > 0 such that (−α1, α1) ⊂ domφτ , for all τ ∈ (0, τ0) (thanks to the epiconvergence of φτ to φ0).
Let us set

a(τ) := 〈e1, p̄− Y (x̄+ τu, p̄)〉, τ ≥ 0.
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Recalling that σF (x̄+τu)(p̄) = 〈p̄, Y (x̄+τu, p̄)〉 and σF (x̄)(p̄) = 〈p̄, ȳ〉 and denoting by Λ the Lipschitz
constant of Y (·, p̄), we deduce that

|a(τ)| ≤ Λτ |e1|. (5.9)

Translating formula (5.7) into the coordinates {e1, e2} given in (5.6) we readily obtain that for all
b1 ∈ B the following inequality holds:

〈−p̄, ȳ〉 − τ〈p̄, w〉+ τδ + 〈p̄, Y (x̄+ τu, p̄)〉 < φτ (a(τ) + τ〈e1, w〉+ τδb1) . (5.10)

Observing that 〈e1, w〉 = |w|2 − 〈p̄, w〉2 > 0 and recalling that σF (x̄)(p̄) = 〈p̄, ȳ〉, we deduce
from (5.10) that

φτ (a(τ) + τ〈e1, w〉+ τδb1) > τ

(
σF (x̄+τu)(p̄)− σF (x̄)(p̄)

τ
− 〈p̄, w〉+ δ

)
.

Therefore we deduce from (5.6) that for sufficiently small τ > 0

φτ (Xτ ) >
δ

2
τ , where Xτ := a(τ) + τ〈e1, w〉+ τδb1 6= 0.

By the mean value theorem, there exist Zτ ∈ [0, Xτ ] and ξτ ∈ ∂φτ (Zτ ) (subdifferential of φτ at Zτ )
such that

φτ (Xτ )− φτ (0) = ξτXτ >
δτ

2
.

Clearly when τ → 0 we have Xτ → 0 hence Zτ → 0. Moreover since

1

τ
|Xτ | ≤ Λ|e1| + |〈e1, w〉| + δ

we have

|ξτ | ≥
δ/2

Λ|e1|+ |〈e1, w〉|+ δ
:= ∆0 > 0.

Claim. The set { |ξτ | : τ ∈ (0, δ)} is bounded.

Let (−α1, α1) ⊂ domφτ for all τ ∈ [0, δ). Since the convex function φ0 is κ-Lipschitz on [−α1, α1)
for some constant κ > 0, we have ∂φ0(t) ⊂ [−κ, κ] for all t ∈ (−α1, α1). We now deduce from
(5.8) that ∂φτ (Zτ ) ⊂ [−κ, κ], for all τ ∈ (0, δ), and consequently, we may assume (passing to a
subsequence) that (ξτ )τ converges to some ξ and the sequence (Zτ , ξτ ) ∈ gph (∂φτ ) converges to
(0, ξ) which belongs to gph (∂φ0) by (5.8). We deduce that |ξ| = lim |ξτ | > δ0 > 0, which is a
contradiction since φ0 is differentiable at 0 with φ′0(0) = 0, because ȳ = Y [x̄, p̄) is a smooth point
of ∂F (x̄). The proof is complete. 2

Remark 5.6. (i). As already mentioned, differentiability of F at (x, y) is straightforward whenever
y ∈ intF (x). Theorem 5.5 establishes differentiability also for a.e. y ∈ ∂F (x).

(ii). The proof of Theorem 5.5 uses in a crucial way (namely, in (5.9)) that the set-valued map F
is not only Lipschitz, but isotropically Lipschitz. Although this assumption seems indeed essential,
we do not have any counterexample so far. This could be a topic for further investigations.
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sociés. C. R. Acad. Sci. Paris Sér. 284 (1977), 539–542.

[3] J.-P. Aubin, H. Frankowska, C. Olech, Controllability of Convex Processes, SIAM J.
Control Optim. 24 (1986), 1192–1211.

[4] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, (Birkhäuser, 1990).
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