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Abstract
A classical result of variational analysis, known as Attouch theorem, establishes an
equivalence between epigraphical convergence of a sequence of proper convex lower
semicontinuous functions and graphical convergence of the corresponding subdiffer-
ential maps up to a normalization conditionwhich fixes the integration constant. In this
work, we show that in finite dimensions and under a mild boundedness assumption,
we can replace subdifferentials (sets of vectors) by slopes (scalars, corresponding to
the distance of the subdifferentials to zero) and still obtain the same characterization:
namely, the epigraphical convergence of functions is equivalent to the epigraphical
convergence of their slopes. This surprising result goes in line with recent develop-
ments on slope determination (Boulmezaoud et al. in SIAMJOptim 28(3):2049–2066,
2018; Pérez-Aros et al. in Math Program 190(1–2):561-583, 2021) and slope sensi-
tivity (Daniilidis and Drusvyatskiy in Proc Am Math Soc 151(11):4751-4756, 2023)
for convex functions.
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1 Introduction

In 1977,HédyAttouch showed that a sequence of proper convex lower semicontinuous
(in short lsc) functions { fn}n≥1 epi-converges to (a lsc convex function) f if and only
if the sequence {∂ fn}n≥1 of the corresponding subdifferentials converges graphically
to the subdifferential ∂ f of f and a normalization condition (fixing the constant of
integration) holds, see [2, 3]. Epi-convergence of a sequence of functions refers to
the set-convergence of the sequence of epigraphs of the functions, while the graph
convergence of a sequence of set-valued maps involves the set-convergence of their
graphs. In finite dimensions, both convergences are in the Painlevé–Kuratowski sense.
The result remains valid in a reflexive Banach space, provided the convergence of
{epi fn}n≥1 to epi f is taken in the Mosco sense (see [26]).

Attouch theorem has been further extended in [4, 12, 21] to any Banach space,
using the notion of slice convergence which is shown to be equivalent to the Mosco
epi-convergence of both functions and their convex conjugates. Further extensions
cover more general classes of functions, as for instance the class of primal lower nice
functions (see [12, 24, 29] e.g.).

The importance of the Attouch theorem can be measured by its numerous applica-
tions: it has been used to establish strong solutions in parabolic variational inequalities
[6], stability results in numerical optimization [23], stochastic optimization [18] aswell
as theoretical results on generalized second order derivatives of convex functions [31]
or in relation with the differentiability of Lipschitz set-valued maps [16]. It also meets
applications in non-regular mechanics and in subgradient evolution systems, see [3,
5] and references therein.

The original proofs of the Attouch theorem (see [2–4]) are based on the integration
formula of Rockafellar [30] for the class of maximal cyclically monotone operators,
which is a characteristic property of the subdifferential map of a convex function. The
approach of [12] is different, but still relies on the subdifferential determination of
any convex function. Indeed, it is well-known that the equality ∂ f = ∂g for any two
convex lsc functions f , g guarantees that the functions are equal up to a constant.

Quite recently, the following intriguing result has been established: convex lsc
functions are fully determined by the slope mapping x �→ s f (x) := dist(0, ∂ f (x))
(rather than the whole subdifferential), up to an additive constant, provided they are
bounded from below. In other words, knowledge of the remoteness of the subdiffer-
ential (which is a scalar) at every point, gives in this case, enough information for the
full determination of the subdifferential and consequently, of the function, that is,

s f = sg ⇐⇒ ∂ f = ∂g ⇐⇒ f = g + cst. (1.1)

This result has first been established in Hilbert spaces for the class of smooth (convex
and bounded from below) functions [11] and has then been extended to the class of
(nonsmooth) convex continuous and bounded from below functions [27]. Although
it is not relevant for our purposes, let us mention for completeness that (1.1) was
ultimately established in [33] for convex functions defined in an arbitrary Banach
space. Further extensions to the class of Lipschitz functions in metric spaces, upon
knowledge of the critical set, have been done in [17].
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Very recently, a study of robustness of the slope determination result has been
carried out in [14], motivated by the following question:

If the slopes of two convex functions are close, are the function values close?

In finite dimensions, the main result of [14] reads, roughly speaking, as follows: if
f , g are two convex continuous functions that attain their minimum value, then:

‖g − f ‖U � ‖sg − s f ‖U + ‖g − f ‖C f ∪Cg ,

where U is any bounded set, ‖ · ‖U is the sup-norm over U , C f := argmin f and
Cg := argmin g. In particular, the quantity ‖g − f ‖U is controlled in a Lipschitz
manner by the slope deviation ‖sg − s f ‖U , yielding the following convergence result:
Theorem 1.1 ([14], Corollary 3.3) Let { fn}n≥0 be convex continuous functions such
that

C fn := argmin fn 	= ∅ for all n ≥ 0 and C := (∪n≥0 C fn

)
is bounded.

Assume further that:
(i). {s fn }n converges to s f0 uniformly on bounded sets;
(ii). { fn}n converges to f0 uniformly on C.
Then { fn}n converges to f0 uniformly on bounded sets.

The assumption of existence of (global) minima in the above result is suboptimal,
since it is stronger thanmere boundedness frombelow,whichwas themain assumption
in (1.1), see also [14, Remark 3.4]. In addition, Theorem 1.1 does not cover variational
deviations, which is the natural framework of the Attouch theorem.

In this work we generalize the result of [27] (slope determination) and complement
the result of [14] (slope sensitivity), establishing a slope version of theAttouch theorem
in finite dimensions, under the condition that the limiting function f is bounded from
below. Since graphical convergence of subdifferentials is ostensibly much stronger
than epi-convergence of the slopes (see Sect. 2 for a formal proof of this implication),
the converse implication is the core of our main result (see Sect. 4). Therefore, in a
sensitivity framework, our main theorem (c.f. Theorem 1.6) generalizes the Attouch
theorem, in a similar way that the slope determination generalizes subdifferential
determination.

1.1 Basic setting and notation

We consider the d-dimensional Euclidean space R
d endowed with its usual inner

product 〈·, ·〉 and its Euclidean norm ‖ · ‖. For a subset A ⊂ R
d , we denote by int(A),

cl(A), ∂A and ri(A) its interior, closure, boundary and relative interior, respectively.
Given x ∈ R

d , we write B(x, r) and B(x, r) to denote the open and closed r -balls
centered at x , and we define its distance to the set A as follows:

dist (x, A) := inf
a∈A

‖x − a‖.
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For a function f : R
d → R ∪ {+∞}, we denote its effective domain and respectively

its epigraph by:

dom f := {x ∈ R
d : f (x) < +∞} and epi f = {(x, α) ∈ R

d × R : α ≥ f (x)}.

The (Moreau–Rockafellar) subdifferential of f is then defined as follows:

∂ f (x) = {x∗ ∈ R
d : f (y) ≥ f (x) + 〈x∗, y − x〉, ∀y ∈ R

d}, (1.2)

if x ∈ dom f and empty otherwise. Note that f may not be a convex function and
∂ f (x) may be empty even if x ∈ dom f . If f is proper (i.e., dom f 	= ∅), we denote
by f ∗ : R

d → R ∪ {+∞} its Fenchel conjugate, that is,

f ∗(x∗) = sup
x∈Rd

{〈x∗, x〉 − f (x)
}
. (1.3)

It is easy to check from the definition of f ∗ that Young-Fenchel inequality holds true:
for all (x, x∗) ∈ R

d × R
d one has that f (x) + f ∗(x∗) ≥ 〈x∗, x〉. Moreover, the

subdifferential of f can be characterized in terms of its conjugate function as follows:

x∗ ∈ ∂ f (x) ⇐⇒ f (x) + f ∗(x∗) = 〈x∗, x〉. (1.4)

Following [19] we define the (metric or local) slope of a function f : R
d → R at a

point x ∈ R
d as follows:

s f (x) =
⎧
⎨

⎩
lim sup
y→y

{ f (x)− f (y)}+
d(y.x) , if x ∈ dom f

+∞, otherwise,

where {α}+ = max {0, α} and d(y, x) = ‖x − y‖. This notion has been extensively
studied in the framework of metric analysis, see [1, 8, 9, 20, 22] and references therein.
In the special case that the function f is convex and lsc, for every x ∈ R

d one has:

s f (x) = dist (0, ∂ f (x)) (distance of the subdifferential to 0). (1.5)

Whenever f is a proper convex lsc function and x ∈ dom f , it is well-known that
∂ f (x) is a convex closed set. Notice that s f (x) = +∞ if and only if ∂ f (x) = ∅.

Whenever ∂ f (x) is nonempty, we denote by ∂◦ f (x) the (unique) element of minimal
norm of ∂ f (x), that is,

∂◦ f (x) = proj(0; ∂ f (x)), ∀x ∈ dom ∂ f , (1.6)

where proj(·; A) stands for the projection to a set A ⊂ R
d and

dom ∂ f = {x ∈ R
d ∂ f (x) 	= ∅}
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is the effective domain of the subdifferential of f . Notice that (1.2) yields

0 ∈ ∂ f (x) ⇐⇒ s f (x) = 0 ⇐⇒ x ∈ argmin f (set of global minimizers of f )

(1.7)

As alreadymentioned in the introduction, the slope determines, up to a constant, the
class of convex lsc functions that are bounded from below. In a Hilbert space setting
an important intermediate result, the so-called comparison principle, was established
in [27]. This is recalled below.

Theorem 1.2 (Comparison principle) Let f , g : R
d → R ∪ {+∞} be two convex lsc

functions that are bounded from below. Assume that

(i). inf f ≥ inf g; and
(ii). s f (x) ≥ sg(x), for all x ∈ R

d .

Then it holds: f ≥ g.

In what follows we identify the subdifferential ∂ f (which is a set-valued map from
R
d to R

d ) with its graph gph(∂ f ) (which is the subset of R
d × R

d given just below)
and we indistinctly switch from the notation x∗ ∈ ∂ f (x) to the notation (x, x∗) ∈ ∂ f .
Under this slight abuse of notation, we have:

∂ f := {(x, x∗) ∈ R
d × R

d : x∗ ∈ ∂ f (x)} ( ⊂ R
d × R

d )
,

� f := {(x, x∗, α) ∈ R
d × R

d × R : x∗ ∈ ∂ f (x), α = f (x)} ( ⊂ R
d × R

d × R
)
.

For a proper convex lsc function f : R
d → R∪{+∞} and a point x0 ∈ cl(dom f ),

we say that an absolutely continuous curve γ : [0,+∞) → R
d is a (maximal) steepest

descent curve for f emanating from x0 if it solves the differential inclusion

{
γ̇ (t) ∈ −∂ f (γ (t)), ∀t ∈ [0,+∞),

γ (0) = x0.
(1.8)

It is well known (see, e.g., [5, Chapter 17]) that for any initial point x0 ∈ cl(dom f ),
there exists a unique steepest descent curve emanating from x0. In addition, the
functions t �→ f (γ (t)) and t �→ s f (γ (t)) are decreasing and satisfy

lim
t→+∞ f (γ (t)) = inf f and lim

t→+∞ s f (γ (t)) = 0. (1.9)

If γ is bounded (that is, γ ([0,+∞)) ⊂ B(0, M) for some M > 0), then it has finite
length (see [13, 25] e.g.). This happens exactly when argmin f 	= ∅ and in this case,
γ (t) −→

t→+∞ γ∞, with s f (γ∞) = 0. (Notice here that it is possible to have convergence

in finite time, i.e. γ (T ) = γ∞ for some T > 0, case in which γ becomes stationary
afterwards: think for example of the function f (x) = ‖x‖, for all x ∈ R.)
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1.2 Notions of convergence and Attouch theorem

Let {Sn}n be a sequence of subsets of R
d . We consider the inferior and superior limits

of {Sn}n in the sense of Painlevé–Kuratowski as

Liminf
n→∞ Sn :=

{
x ∈ R

d : lim sup
n→∞

dist (x, Sn) = 0

}
,

Limsup
n→∞

Sn :=
{
x ∈ R

d : lim inf
n→∞ dist (x, Sn) = 0

}
.

We say that {Sn}n converges to a set S in the sense of Painlevé-Kuratowski, which we

denote by Sn
PK−−→ S, if both, the inferior and superior limits of {Sn}n coincide with S.

Noting that Liminf Sn ⊂ Limsup Sn , one can write

Sn
PK−−→ S ⇐⇒ Limsup

n→∞
Sn ⊂ S ⊂ Liminf

n→∞ Sn . (1.10)

In what follows, given a sequence of functions {φn}n from R
d toR∪{+∞}, we define

the functions φl , φu : R
d → R ∪ {±∞} as the lower and, respectively, the upper

epigraphical limits of {φn}n , given as follows:

φl(x) = (e− liminf
n→∞ φn)(x) := inf

xn→x
lim inf
n→∞ φn(xn), (1.11)

φu(x) = (e− limsup
n→∞

φn)(x) := inf
xn→x

lim sup
n→∞

φn(xn)

where, in both cases, the infimum is taken over all sequences {xn}n ⊂ R
d converging to

x . Given an increasing sequence of natural numbers {k(n)}n (whichwe indistinctly also
denote by {kn}n) we denote by φl,k(n) (respectively, φu,k(n)) the lower (respectively,
upper) epigraphical limit of the subsequence {φk(n)}n of {φn}n .
Remark 1.3 (attainability of infimumand lower semicontinuity) The infima that define
φl and φu in (1.11) are attained, that is, for every x ∈ R

d there exist (infimizing)
sequences {xln}n and {xun }n , converging to x , satisfying:

φu(x) = lim sup
n→∞

φn(x
u
n ) and φl(x) = lim inf

n→∞ φn(x
l
n).

Based on the above remark and using a diagonal argument, we easily deduce that the
functions φl and φu are lsc.

Finally, we say that a sequence of functions {φn}n converges epigraphically to a
function φ and denote φn

e−→ φ, if the sequence of epigraphs {epiφn}n converges to
epiφ in the sense of Painlevé-Kuratowski, that is:

φn
e−→ φ ⇐⇒ epiφn

PK−−→ epiφ.
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It is well-known that

φn
e−→ φ ⇐⇒ φu = φ = φl ⇐⇒ φl ≥ φ ≥ φu . (1.12)

Let us finally recall, in the finite dimensional setting, the following celebrated
variational approximation result due to H. Attouch [2]:

Theorem 1.4 (Attouch theorem) Let f , { fn}n : R
d → R ∪ {+∞} be proper convex

lsc functions. The following assertions are equivalent:

(i). epi fn
PK−−→ epi f (that is, fn

e−→ f ).

(ii). ∂ fn
PK−−→ ∂ f and:

∃(x, x∗) ∈ ∂ f and a sequence (xn, x
∗
n ) ∈ ∂ fn, (xn, x

∗
n , fn(xn)) → (x, x∗, f (x)). (NC)

(iii). � fn
PK−−→ � f .

The normalization condition (NC) is necessary in order to fix a reference point.
Without this condition, simple counterexamples can be constructed: indeed, consider
the functions fn(x) ≡ n, for all n ≥ 1 and the function f (x) ≡ 0. Then ∂ fn(x) =
∂ f (x) = {0}, for all x ∈ R

d and n ≥ 1, but fn(x) → ∞, for all x ∈ R
d . We would

also like to point out that, since our setting is finite dimensional, the equivalence
(i) ↔ (i i i) can be found e.g. in [10, 12].

Our objective in this work is to provide a version of the Attouch theorem which is
based on the epigraphical convergence of the slope mappings s fn : R

d → R ∪ {+∞}
(rather than the graphical convergence of the subdifferential maps ∂ fn : R

d ⇒ R
d ).

Before we proceed to this, let us extract the following consequence of Theorem 1.4
(i)⇒(ii) for future use.

Remark 1.5 Let fn
e−→ f . Then for every strictly increasing sequence {kn}n≥1 and for

every {(xkn , x∗
kn

)}n ⊂ R
d × R

d such that xkn → x, x∗
kn

→ x∗ and x∗
kn

∈ ∂ fkn (xkn ),
we have x∗ ∈ ∂ f (x).

1.3 Our contribution

The goal of this work is to establish that epigraphical convergence of convex functions
can be characterized by epigraphical convergence of the slopes.

Our approach relies on the determination result of [27] and naturally inherites the
restriction that the limit function should be bounded from below. As in the Attouch
theorem, a normalization condition will also be required. In this work we can either
use the same condition (NC) as in Theorem 1.4 or an alternative condition over the
infimum of the epigraphical lower and upper limits. Concretely, our main result is as
follows:

Theorem 1.6 (main result) Let f , { fn}n : R
d → R ∪ {+∞} be proper convex lsc

functions. Assume that inf f ∈ R. Then, the following assertions are equivalent:
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(i). fn
e−→ f .

(ii). s fn
e−→ s f and (NC) holds.

(iii). s fn
e−→ s f and inf fl = inf f = inf fu .

The rest of the manuscript is organized as follows: in Sect. 2 we show that impli-
cations (ii) and (iii) of the statement of Theorem 1.6 follow easily from (i) and
Theorem 1.4 (Attouch theorem). Then, Sect. 3, is devoted to a preliminary study of the
functions fl and fu . Finally, in Sect. 4, we show that either one of (ii) or (iii) implies
(i). The approach is divided into two parts: we first show that fu ≤ f in Sect. 4.1, and
then in Sect. 4.2 we prove that f ≤ fl . The main result and final comments are given
at the end (Sect. 5).

2 From epigraphical convergence to slope convergence

In this section, we show the “easy" implications of Theorem 1.6, namely, (i)⇒(ii),(iii).
The proof consists of studying the upper and the lower epigraphical limits of the slope
sequence {s fn }n then combine with (1.12) to deduce the result. A standard argument
that will repeatedly appear in this work, is to study separately the points where the
limit function (in this case s f ) is finite from those where the limit is infinite.

Theorem 2.1 Let f , { fn}n : R
d → R∪{+∞} be proper convex lsc functions. Assume

that fn
e−→ f . Then

s fn
e−→ s f , inf f = inf fl = inf fu and (NC) holds.

Proof Our assumption yields f = fu = fl , thus, inf f = inf fl = inf fu . Condi-
tion (NC) follows from Theorem 1.4 (i)⇒(ii). It remains to prove the epiconvergence
of the sequence {s fn }n to s f . To this end, let x ∈ dom f and consider separately two
cases:

• Case 1: ∂ f (x) = ∅ (that is, s f (x) = +∞)

In this case, we need to show that (e− liminf s fn )(x) = +∞. Let us assume,
towards a contradiction, that there exists a sequence {xn}n ⊂ R

d converging to x ,
such that lim inf n→∞s fn (xn) < +∞. Then, for an adequate subsequence {xkn }n we
would have

lim inf
n→∞ s fn (xn) = lim

n→∞ s fkn (xkn ) < ∞,

and (up to a new subsequence) x∗
kn

→ x∗, for some x∗ ∈ R
d , where x∗

kn
:= ∂◦ fkn (xkn )

is the element of minimal norm in ∂ fkn (xkn ), as in (1.6). By Remark 1.5 we infer that
x∗ ∈ ∂ f (x), which is a contradiction. Therefore, (e− liminf s fn )(x) = +∞ = s f (x).

• Case 2: ∂ f (x) 	= ∅ (that is, s f (x) < +∞)

Let x ∈ dom s f and x̄∗ ∈ ∂ f (x) such that ‖x̄∗‖ = s f (x). Since

(x, x̄∗, f (x)) ∈ � f and since � fn
PK−−→ � f (c.f. Theorem 1.4), there exists a
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sequence (xn, x∗
n , fn(xn)) ∈ � fn converging to (x, x̄∗, f (x)). Thus, using (1.5), we

deduce

lim sup
n→∞

s fn (xn) ≤ lim sup
n→∞

‖x∗
n‖ = ‖x̄∗‖ = s f (x),

which yields (e− limsup s fn )(x) ≤ s f (x). It remains to show that

inf
xn→x

lim inf
n→∞ s fn (xn) ≥ s f (x).

To this end, we consider an arbitrary sequence {xn}n ⊂ R
d converging to x . For a

suitable subsequence {kn}n we have:

lim
n→∞ s fkn (xkn ) = lim inf

n→∞ s fn (xn) = ρ

and we need to show that ρ ≥ s f (x). We can obviously assume that ρ < +∞. For
each n ∈ N, let x∗

kn
= ∂◦ fkn (xkn ) be the element of minimal norm of ∂ fkn (xkn ), that

is, ‖x∗
kn

‖ = s fkn (xkn ). Since s fkn (xkn ) → ρ, the subsequence {x∗
kn

}n is bounded and

converges (up to a new subsequence) to some x∗ ∈ R
d , with ‖x∗‖ = ρ. ByRemark 1.5

we have x∗ ∈ ∂ f (x) and consequently

s f (x) ≤ ‖x∗‖ = lim
n→∞ ‖x∗

kn‖ = lim
n→∞ s fkn (xkn ) = ρ.

Since the sequence {xn}n is arbitrary, we have s f (x) ≤ (e− liminf s fn )(x).
The proof is complete. ��

3 Some intermediate results

In this part, we obtain some preliminary results, which are needed for the proof of
the “difficult” implication of our main theorem. Some of the forthcoming results are
essentially known, other are less obvious and require a careful analysis.

3.1 General results from convex analysis

The first result is essentially known.

Proposition 3.1 Let f : R
d → R ∪ {+∞} be a proper convex lsc function. Then

ri(dom s f ) = ri(dom f ) and therefore it is a convex set.

Proof Let us first notice that dom s f = dom ∂ f . Since f is convex, ∂ f is nonempty
on ri(dom f ). Thus, ri(dom f ) ⊂ dom s f ⊂ dom f . Without loss of generality, we
may assume that 0 ∈ dom f . Set V = span(dom f ), that is, the subspace of R

d

generated by dom f . Notice that ri(dom f ) generates the same subspace V , therefore
span(dom s f ) = V . Since the relative interiors of dom s f and dom f are taken with
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respect to the same space V , we have ri(dom s f ) ⊂ ri(dom f ). The conclusion follows
from the convexity of dom f . ��

The following result is also quite intuitive.

Proposition 3.2 Let f , g : R
d → R ∪ {+∞} be two functions, with f convex and g

lsc. Let A ⊂ dom f be a nonempty convex set. Assume that f ≥ g on A. Then, f ≥ g
on cl(A).

Proof Let x̄ ∈ cl(A) and x ∈ ri(A). Then (x̄, x] ⊂ A. Note that f (x) ≥ g(x) ∈ R.
Since f is convex and g is lsc, we have that

g(x̄)≤ lim inf
t→0+ g(t x+(1−t)x̄)

≤ lim inf
t→0+ f (t x + (1 − t)x̄) ≤ lim inf

t→0+ {t f (x) + (1 − t) f (x̄)} = f (x̄).

Since x̄ was arbitrarily chosen in cl(A), we conclude that f ≥ g on cl(A).

Let K ⊂ R
d be a nonempty convex set. We denote by σK : R

d → R the support
function of K , that is, for any x ∈ R

d we have

σK (x) := sup
y∈K

〈x, y〉.

Additionally, for x ∈ K , we denote by NK (x) the normal cone of K at x . It is well
known that

NK (x) = {x∗ ∈ R
d : σK (x∗) ≤ 〈x∗, x〉}.

With this in mind, the following proposition establishes a density characterization for
the subdifferential of convex functions.

Proposition 3.3 Let f : R
d → R ∪ {+∞} be a proper convex lsc function and let

(x, x∗) ∈ dom f × R
d . Assume there exists a dense subset D of ri(dom f ) such that

∀y ∈ D, ∃y∗ ∈ ∂ f (y) such that 〈y∗ − x∗, y − x〉 ≥ 0. (3.1)

Then x∗ ∈ ∂ f (x).

Proof Without loss of generality, we may assume 0 ∈ ri(dom f ) and set V =
span(dom f ). We consider two cases.

• Case 1: V = R
d and consequently ri(dom f ) = int(dom f )

In this case, ∂ f is locally bounded on int(dom f ) and upper semicontinuous (in
the sense of set-valued maps). Therefore (3.1) entails that

∀y ∈ int(dom f ), ∃y∗ ∈ ∂ f (y) such that 〈y∗ − x∗, y − x〉 ≥ 0.
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In particular, for every differentiability point y of f , it holds that
〈∇ f (y) − x∗, y − x〉 ≥ 0. Moreover, since for every y ∈ int(dom f ) we have
that ∂ f (y) can be recovered as the convex hull of limits of gradients of f (see, e.g.,
[32, Theorem 9.61]), we get that

〈y∗ − x∗, y − x〉 ≥ 0, ∀(y, y∗) ∈ D,

where

D = cl({(z, z∗) : z ∈ int(dom f ), z∗ ∈ ∂ f (z)}).

Now, take (ȳ, ȳ∗) ∈ ∂ f \D. Clearly, ȳ ∈ ∂(dom f ) and f (ȳ) ∈ R. Consider the
convex body K = cl(dom f ) and set

Kn =
(
1 − 1

n

)
K and fn = f + IKn , ∀n ∈ N,

where IKn is the indicator function of Kn, that is, IKn (x) = 0, if x ∈ Kn and

+∞ elsewhere. Notice that Kn ⊂ int(K ) and that by construction fn
e−→ f .

Applying Theorem 1.4 (Attouch theorem), we deduce that � fn
PK−−→ � f . There-

fore, there exists a sequence {(zn, z∗n, fn(zn))}n converging to (ȳ, ȳ∗, f (ȳ)) such
that zn ∈ Kn and z∗n ∈ ∂ fn(zn). Since f and IKn are proper convex lsc functions,
zn ∈ dom f ∩ dom IKn and f is continuous at zn (because zn ∈ int(dom f )), we can
apply the sum rule for subdifferentials given in [28, Theorem 3.16] to get: y∗

n ∈ ∂ f (zn)
and v∗

n ∈ ∂ IKn (zn) ≡ NKn (zn) such that z∗n = y∗
n + v∗

n . In particular, (zn, y∗
n ) ∈ D

and therefore 〈y∗
n − x∗, zn − x〉 ≥ 0.

Notice further that fn(zn) = f (zn) → f (ȳ) and that σKn = (1− 1
n )σK . Therefore,

for every z ∈ Kn we have that

NKn (z) =
{
v∗ ∈ R

d : σKn (v
∗) ≤ 〈v∗, z〉

}

=
{
v∗ ∈ R

d : σK (v∗) ≤ 〈v∗, (1 − 1
n )−1z〉

}
= NK

(
(1 − 1

n )−1z
)

.

In particular, since v∗
n ∈ NKn (zn) = NK (( n

n−1 )zn), for every x ∈ K we have

〈v∗
n , x − ( n

n−1 )zn〉 ≤ 0

and combining with the definition of the subdifferential map given in (1.2), we deduce
that

〈z∗n − x∗, zn − x〉 = 〈y∗
n − x∗, zn − x〉 + 〈v∗

n , zn − x〉 ≥ 〈v∗
n , zn − x〉

= 〈v∗
n , (

n
n−1 )zn − x〉 − 1

n − 1
〈v∗

n , zn〉 ≥ − 1

n − 1
〈v∗

n , zn〉

= 1

n − 1
(〈y∗

n , zn − 0〉 − 〈z∗n, zn〉) ≥ 1

n − 1

(
f (zn) − f (0) − 〈z∗n, zn〉

)
.
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Since (zn, z∗n, f (zn)) → (ȳ, ȳ∗, f (ȳ)), we can take limit at both sides of the obtained
inequality, deducing that 〈ȳ∗ − x∗, ȳ − x〉 ≥ 0. Since (ȳ, ȳ∗) was arbitrarily chosen
in ∂ f , we obtain:

〈y∗ − x∗, y − x〉 ≥ 0, ∀(y, y∗) ∈ ∂ f ,

and we conclude that (x, x∗) ∈ ∂ f by maximal monotonicity of the subdifferential
(see, e.g., [28, Theorem 3.24]).

• Case 2: (general case)

Let πV : R
d → V be the orthogonal projection onto V and let us denote by

g : V → R ∪ {+∞} the restriction of f on V . Note that for every z ∈ dom g, every
z∗ ∈ V and every ν∗ ∈ V⊥, we have:

z∗ ∈ ∂g(z) ⇐⇒ ∀z′ ∈ V , 〈z∗, z′ − z〉 ≤ g(z′) − g(z)

⇐⇒ ∀z′ ∈ V , 〈z∗ + ν∗, z′ − z〉 ≤ f (z′) − f (z)

⇐⇒ ∀z′ ∈ R
d , 〈z∗ + ν∗, z′ − z〉 ≤ f (z′) − f (z)

⇐⇒ z∗ + ν∗ ∈ ∂ f (z),

that is,

∂ f (z) = π−1
V (∂g(z)), ∀z ∈ dom f .

Therefore, it is enough to verify that πV (x∗) ∈ ∂g(x). Note that, by projecting the
subgradients of f onto V , (3.1) entails that

∀y ∈ D, ∃y∗ ∈ ∂g(y) such that 〈y∗ − πV (x∗), y − x〉 ≥ 0,

where D is a dense subset of int(dom g) and where the interior is taken with respect
to the space V . Using the same reasoning as in Case 1 above, we conclude that
πV (x∗) ∈ ∂g(x). The proof is complete. ��

3.2 Two key lemmas

We now state and prove two important technical lemmas. The first one states that for
a sequence of proper convex lsc functions { fn}n from R

d to R ∪ {+∞}, if a sequence
of points {xn}n converges and the sequence of slopes {s fn (xn)}n is bounded, then the
sequence {xn}n automatically infimizes the expressions of fu and fl given in (1.11)
evaluated at its point of convergence.

Lemma 3.4 Let fn : R
d → R ∪ {+∞}, n ≥ 1, be a sequence of proper lsc convex

functions. Let {xn}n ⊂ R
d be such that {s fn (xn)}n is bounded. Assume that {xn}n

converges to some x̄. Then

fl(x̄) = lim inf
n→∞ fn(xn) and fu(x̄) = lim sup

n→∞
fn(xn).
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Proof Let {yn}n ⊂ R
d be an arbitrary sequence converging to x̄ . Then

lim inf
n→∞ fn(yn) ≥ lim inf

n→∞
{
fn(xn) − s fn (xn) ‖xn − yn‖

} = lim inf
n→∞ fn(xn).

It follows readily that lim infn→∞ fn(xn) = fl(x̄).
Let further {kn}n be a strictly increasing sequence such that

lim sup
n→∞

fn(xn) = lim
n→∞ fkn (xkn ).

Then for every sequence {yn}n converging to x̄ we have:

lim sup
n→∞

fn(yn) ≥ lim sup
n→∞

fkn (ykn ) ≥ lim sup
n→∞

{
fkn (xkn ) − s fkn (xkn ) ‖xkn − ykn‖

}

= lim
n→∞ fkn (xkn ) = lim sup

n→∞
fn(xn).

Therefore we conclude that lim supn→∞ fn(xn) = fu(x̄) and the proof is complete.

The previous result will be now used to establish our second important technical
lemma:

Lemma 3.5 Let f , { fn}n : R
d → R ∪ {+∞} be proper convex lsc functions such

that the sequence of slope functions {s fn }n≥1 epigraphically converges to s f . Assume
further that there exists a sequence {xn}n ⊂ R

d , x̄ ∈ dom s f and α ∈ R such that

{s fn (xn)}n is bounded and lim
n→∞ (xn, fn(xn)) = (x̄, α). (3.2)

Then,

dom s f ⊂ dom fl ∩ dom fu ⊂ dom fl ∪ dom fu ⊂ cl(dom s f ) = cl dom f ).

Proof The equality cl(dom s f ) = cl(dom f ) follows easily from the fact that
dom s f = dom ∂ f is dense in dom f (see, e.g., [28, Theorem 3.17]). In addition,
thanks to Lemma 3.4, we have fl(x̄) = fu(x̄) = α ∈ R.

Let y ∈ dom s f and let us assume, towards a contradiction, that fl(y) = +∞. Then
for any sequence {yn}n ⊂ R

d that converges to y we have lim infn→∞ fn(yn) = +∞.
Note that the inequality

fn(x) ≥ fn(y) − s fn (y) ‖x − y‖ (3.3)

is valid for all n ≥ 1 and all x, y ∈ dom fn . Take the sequence xn → x̄ given by
(3.2), which verifies that lim infn→∞ fn(xn) = fl(x̄), and choose {yn}n ⊂ R

d such
that

(
yn, s fn (yn)

) → (y, s f (y)) (c.f. Remark 1.3). Then replacing x by xn and y by
yn in (3.3) above, we easily deduce fl(x̄) = +∞, which is a contradiction.

Therefore, fl(y) < +∞.
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On the other hand, setting σ = supn→∞ s fn (xn) < +∞, we easily see that for any
sequence {yn}n converging to y we have:

lim inf
n→∞ fn(yn)≥lim inf

n→∞
{
fn(xn)−s fn (xn) ‖xn−yn‖

} ≥ f (x̄)−σ ‖x̄−y‖ > −∞,

yielding fl(y) ∈ R. Since y is an arbitrary vector in dom s f , we have that dom s f ⊂
dom fl .

Let us nowshow that fu(y) < +∞. Indeed, assuming the contrary, for any sequence
{yn}n ⊂ R

d that converges to y, we would have lim supn→∞ fn(yn) = +∞. Evoking
again Remark 1.3, we can take {yn}n such that

(
yn, s fn (yn)

) → (y, s f (y)). Therefore,
for every n ≥ 1 we would have:

fn(xn) ≥ fn(yn) − s fn (yn) ‖xn − yn‖

and taking limsup at both sides of the above inequality, we would obtain α = fu(x̄) =
+∞, which is a contraction. Therefore,recalling that −∞ < fl(y) and that fl ≤ fu ,
we deduce the inclusion

dom s f ⊂ dom fl ∩ dom fu .

Let us now show that dom fl ∪ dom fu ⊂ cl(dom s f ). To this end, let y /∈
cl(dom s f ) and let ε > 0 be such that B(y, ε) ⊂ R

d \ cl(dom s f ).
We claim that s fn → ∞ uniformly on B(y, ε). Indeed, otherwise, there would exist

M > 0, a strictly increasing sequence {kn}n ⊂ N and a sequence {zn}n ⊂ B(y, ε)
such that s fkn (zkn ) < M for all n ∈ N. It follows that s f (z) ≤ M for any cluster point
z ∈ B(y, ε) of {zkn }n leading to a contradiction.

We now set

Mn := inf
z∈B(y,ε)

s fn (z), n ≥ 1,

and observe that Mn → +∞ as n → ∞. With this in mind, let us show that fl(y) =
+∞.

We proceed by contradiction: assume that fl(y) ∈ R, that is, for some sequence
{yn}n ⊂ B(y, ε) converging to y we have lim inf

n→∞ fn(yn) < ∞. Then for n sufficiently

large (say n ≥ N ), let γn : [0,∞) → R
d be the steepest descend curve of the convex

function fn starting at yn, that is,

γ̇n ∈ −∂ fn(γn) and γn(0) = yn .

Let further {tn}n ⊂ (0,∞) be the least escape-time sequence defined by

tn = inf {t > 0 : γn(t) ∈ R
d \ B(y, ε)}.

In other words, tn > 0 is the first instant where the steepest descent curve γn escapes
from the ball B(y, ε). Thus, γn(tn) ∈ ∂B(y, ε) for all n ≥ N . Since ‖γ̇n(τ )‖ =
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s fn (γn(τ )) (c.f. [5, Theorem 17.2.2]) and since the length of the curve γn in [0, tn]
is larger than the distance dist (yn, ∂B(y, ε)) = ε − ‖yn − y‖ of the initial point
γn(0) = yn to the boundary, we can write

fn(γn(tn)) = fn(yn) −
∫ tn

0
s fn (γn(τ )) ‖γ̇n(τ )‖ dτ ≤ fn(yn) − (ε − ‖yn − y‖) Mn,

concluding that lim inf
n→∞ fn(γn(tn)) = −∞. However, convexity of fn at xn ∈ dom ∂ fn

yields that for all n ∈ N we have:

fn(·) ≥ gn(·) := fn(xn) − s fn (xn) ‖ · −xn‖,

and consequently,

lim inf
n→∞ fn(γn(tn)) ≥ lim inf

n→∞ gn(γn(tn))

≥ lim
n→∞ fn(xn) − lim sup

n→∞
{
s fn (xn) (‖xn − y‖ + ‖y − γn(tn)‖)

}

≥ f (x) −
(
sup
n∈N

s fn (xn)

)
(‖x − y‖ + ε) > −∞,

which is a contradiction.
Therefore, dom fl ⊂ cl(dom s f ). Since fl ≤ fu, the proof is complete. ��

4 From slope convergence to epigraphical convergence

In this section we establish the difficult part of our main result, which states that
up to a normalization condition, slope epigraphical convergence yields epigraphical
convergence of the functions. This will be done in two stages: in Sect. 4.1 we show that
fu ≤ f while in Sect. 4.2 we will control the gap between fu and fl , then use (1.12)
to deduce our result.

4.1 Domination of the upper epigraphical limit

We start with the following known proposition:

Proposition 4.1 Let fn : R
d → R ∪ {+∞}, n ∈ N, be convex functions. Then

fu = e− limsup fn

is a convex lsc function.

Proof It follows directly from [32, Theorem 7.4a & Theorem 7.17]. ��
Let us also recall (Remark 1.3) that the function fl = e− liminf fn is also lsc.
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Lemma 4.2 Let f , { fn}n : R
d → R ∪ {+∞} be proper convex lsc functions. Assume

that {s fn }n epigraphically converges to s f and that fu(x̄) ∈ R for some x̄ ∈ dom s f .
Then

s fu ≤ s f .

Proof In view of Lemma 3.5 we have dom s f ⊂ dom fu . Let y ∈ dom s f and let
{yn}n be such that

(yn, s fn (yn)) → (y, s f (y)).

The sequence {y∗
n }n := {∂◦ fn(yn)}n is then bounded. By Lemma 3.4 we have that

fu(y) = lim sup
n→∞

fn(yn).

Passing to a subsequence, we may assume that for some y∗ ∈ R
d

lim
n→∞(ykn , y

∗
kn , fkn (ykn )) = (y, y∗, fu(y)).

Since s fn (yn) → s f (y), it follows easily that ‖y∗‖ = s f (y). Furthermore, for any
z ∈ R

d and any sequence {zn}n converging to z we have

lim sup
n→∞

fn(zn) ≥ lim sup
n→∞

fkn (zkn )

≥ lim sup
n→∞

{
fkn (ykn ) + 〈y∗

kn , zkn − ykn 〉
}

= fu(y) + 〈y∗, z − y〉.

Since {zn}n is an arbitrary sequence, we deduce fu(z) ≥ fu(y) + 〈y∗, z − y〉. Since
z is arbitrary, we obtain that y∗ ∈ ∂ fu(y). Thus, s fu (y) ≤ ‖y∗‖ = s f (y).

If y /∈ dom s f , the inequality s fu (y) ≤ s f (y) ≡ +∞ is obvious. The proof is
complete. ��

The above lemma will be used in the following result.

Proposition 4.3 Let f , { fn}n : R
d → R ∪ {+∞} be proper convex lsc functions.

Assume that {s fn }n converges epigraphically to s f and that inf f = inf fu ∈ R.
Then

fu ≤ f .

Proof Let x̄ ∈ dom s f and let us show that fu(x̄) ∈ R. Indeed, one obviously has
fu(x̄) ≥ inf fu > −∞. Reasoning towards a contradiction, let us assume that
fu(x̄) = +∞. Then for any sequence {xn}n converging to x̄ , we have that
lim supn→∞ fn(xn) = +∞.Wemay choose {xn}n so that (xn, s fn (xn)) → (x̄, s f (x̄)),
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ensuring in particular that {s fn (xn)}n is bounded. Then for every y ∈ R
d and every

sequence {yn}n ⊂ R
d such that yn → y we have:

lim sup
n→∞

fn(y) ≥ lim sup
n→∞

{
fn(xn) − s fn (xn) ‖xn − yn‖

}

= lim sup
n→∞

fn(xn) − s f (x̄) ‖x̄ − y‖ = +∞.

This yields that fu ≡ +∞, which is a contradiction.
Therefore, fu(x̄) ∈ R and we can apply Lemma 4.2 to get that s fu ≤ s f . The

conclusion follows from Theorem 1.2 (comparison principle). ��
Forthcoming Lemma 4.5 provides a criterium for a limit of steepest descent curves

(of convex functions converging epigraphically to a limit function) to be a steepest
descent curve of the limit function. This is an intermediate result, which will be further
refined in Lemma 4.7 and eventually lead to Proposition 4.8 (domination of fu by f ).

We shall first need the following result.

Proposition 4.4 Let {γn}n be a sequence of Lipschitz curves from [0,+∞) to R
d .

Assume that the sequence {γn(0)}n is bounded and that all Lipschitz constants of
the curves {γn}n are bounded by a constant K > 0, that is, Lip(γn) ≤ K for all
n ≥ 1. Then, there exists an increasing sequence {k(n)}n such that {γk(n)}n converges
uniformly on compact sets to a Lipschitz curve γ : [0,+∞) → R

d and the sequence
of its tangents {γ̇k(n)|[0,T ]}n converges weakly to γ̇ |[0,T ] in L2([0, T ]; R

d), for any
T > 0.

Proof Let us first assume that the curves {γn}n are defined on [0, 1]. Since {γn(0)}n
is relatively compact and Lip(γn) ≤ K for all n ∈ N, we can apply Arzelà–Ascoli
theorem to get a subsequence {γk(n)}n which converges uniformly to some continuous
curve γ on [0, 1]. It follows easily that γ is Lipschitz with Lip(γn) ≤ K . Since
{γ̇k(n)}n is bounded on L2([0, T ]; R

d) (in fact ‖γ̇k(n)‖L2 ≤ K ), by the Eberlein–
S̆mulian theorem, there exists a subsequence {k′(k(n))}n which we denote by {k̄(n)}n
(that is, k̄ = k′ ◦ k), such that {γ̇k̄(n)}n converges weakly to ν : [0, 1] → R

d . Notice
that, for each n ≥ 1 we have that

γk̄(n)(t) = γk̄(n)(0) +
∫ t

0
γ̇k̄(n)(s)ds, for all t ∈ [0, 1].

Taking the limit as n → +∞, we obtain

γ (t) = γ (0) +
∫ t

0
ν(s)ds, for all t ∈ [0, 1].

Therefore, γ̇ (t) = ν(t), for all t ∈ [0, 1] and the assertion follows.
The general case follows easily: if the curves {γn}n are defined on [0,+∞), we fix

T > 0 and proceed as before for the restricted curves {γn|[0,T ]}n . The result follows
via a standard diagonal argument.
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We are now ready to prove our lemma.

Lemma 4.5 Let f , { fn}n : R
d → R∪{+∞} be proper convex lsc functions such that

s fn
e−→ s f and inf f > −∞.

Assume that there is a sequence (xn, x∗
n , fn(xn)) ∈ � fn, n ≥ 1 such that

lim
n→∞ (xn, x

∗
n , fn(xn)) = (x̄, x̄∗, f (x̄)) ∈ � f .

For every n ≥ 1, let γn : [0,+∞) → R
d denote the steepest descent curve of fn

starting from the point xn ∈ dom fn, and let us assume that:
(i). {γn}n converges to some Lipschitz curve ν uniformly on compact sets; and
(ii). for all T > 0, the tangents {γ̇n|[0,T ]}n converge to ν̇|[0,T ] weakly on

L2([0, T ], R
d).

Then ν is a steepest descent curve for the function fu.

Proof Thanks to Lemma 3.5, we know that dom s f ⊂ dom fu ⊂ cl(dom s f ), which
yields

ri(dom s f ) = ri(dom fu).

Since γn is a steepest descent curve of fn emanating from xn , for every t > 0 and
n ∈ N we have:

fn(γn(t)) ≤ fn(xn) and s fn (γn(t)) ≤ s fn (xn).

It follows easily from our hypothesis that the sequence {s fn (γn(t))}n is bounded. Since
γn(t) → ν(t), Lemma 3.4 entails that

fu(ν(t)) = lim sup
n→∞

fn(γn(t)) ≤ lim sup
n→∞

fn(xn) = f (x̄) < +∞.

Thus, for every t > 0, we have ν(t) ∈ dom fu .
Let y ∈ ri(dom fu) and let (yn, y∗

n ) ∈ ∂ fn be such that {yn}n converges to y and
the sequence {‖y∗

n‖}n = {s fn (yn)}n converges to s f (y). Passing to a subsequence
{(ykn , y∗

kn
)}n , we obtain

fu(y) = lim
n→∞ fkn (ykn ) and lim

n→∞y∗
kn = y∗ for some y∗ ∈ R

d .

Using the same argument as in the proof of Lemma 4.2 we deduce that y∗ ∈ ∂ fu(y).
Then, for any bounded Borel set A ⊂ [0,+∞) and any n ∈ N we have

0 ≤
∫

A

〈
y∗
kn + γ̇kn (t), ykn − γkn (t)

〉
dt .
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Taking the limit as n → ∞ we obtain (thanks to our assumption) that

0 ≤
∫

A

〈
y∗ + ν̇(t), y − ν(t)

〉
dt .

Since A ⊂ [0,+∞) is an arbitrary bounded Borel set, we deduce that
〈y∗ + ν̇(t), y − ν(t)〉 ≥ 0 for a.e. t ∈ [0,+∞). Since y ∈ ri(dom fu) is arbi-
trary, we can take a sequence {(zn, z∗n)}n ⊂ ∂ fu such that ‖z∗n‖ = s f (zn), for all
n ∈ N, and {zn}n is dense in ri(dom fu), obtaining

0 ≤ 〈z∗n + ν̇(t), zn − ν(t)〉, ∀a.e.t ∈ [0,+∞), ∀n ∈ N.

Thus, applying Proposition 3.3, we deduce that

ν̇(t) ∈ −∂ fu(ν(t)), ∀a.e.t ∈ [0,+∞).

The proof is complete. ��
Before we proceed, let us recall an important technical result ensuring that abso-

lutely continuous curves verifying an integrability condition for the slope of a convex
functionmust be infimizing. This result is essentially known, butwe include a proof for
completeness, since the precise statement that we use below in not directly available
in the literature. A strengthened version (which is also contained in the proposition
below) can be obtained if the curve is a steepest descent curve of another function, see
[27, Lemma 3.1]. A discretized version has been used in [33].

Proposition 4.6 (infimizing curves by integrability of slope) Let g : R
d → R ∪

{+∞} be a proper convex lsc function, and let γ : [0,+∞) �→ R
d be an absolutely

continuous curve. The following assertions hold:

(i). If γ satisfies that

lim inf sg(γ (t)) = 0 and
∫ +∞

0
sg(γ (t)) ‖γ̇ (t)‖ dt < +∞, (4.1)

then

lim inf
t→+∞g(γ (t)) = inf g.

(ii). Let f be another proper convex lsc function such that

s f (x) ≥ sg(x), for all x ∈ R
d and inf f > −∞.

If γ : [0,+∞) �→ R
d is the steepest descent curve for f starting at a point

x̄ ∈ dom f , then

lim
t→+∞ g(γx̄ (t)) = inf g.
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Moreover, if f (x̄) = g(x̄), then inf g ≥ inf f .

Proof (i). Integrability of the slope implies that γ (t) ∈ dom ∂g for almost every
t ≥ 0. Thus, for almost every t ≥ 0, we can define h(t) = ∂◦ f (γ (t)) so that
‖h(t)‖ = s f (γ (t)). Then via the standard subdifferential calculus (chain rule) for
convex functions (see, e.g., [5, Proposition 17.2.5]) we deduce:

g(γ (t)) − g(γ (0)) =
∫ t

0
〈h(τ ), γ̇ (τ )〉dτ ≤

∫ +∞

0
sg(γ (t))‖γ̇ (t)‖dt < +∞.

Thus, lim inf t→+∞ g(γ (t)) ≤ lim supt→+∞ g(γ (t)) < +∞.
Claim. There exists an increasing sequence {tn}n∈N such that

tn ↗ +∞ and sg(γ (tn)) = min
t∈[t0,tn ]

sg(γ (t)). (4.2)

By assumption we have that lim inf t→+∞ sg(γ (t)) = 0. If sg(γ (t)) = 0
recurrently as t → +∞, then we choose {tn}n to be any increasing sequence
with tn → +∞ and sg(γ (tn)) = 0 for every n ∈ N. Otherwise, we fix
t0 ≥ sup{t ∈ [0,+∞) sg(γ (t)) = 0} + 1 and we define:

Mn := argmin
t∈[t0,t0+n]

sg(γ (·)) and tn = maxMn .

Since sg is lsc by convexity of g (see, e.g., [1]), the sequence {tn}n is well defined and
(4.2) holds.

Now, take any v ∈ dom g and Tε ≥ t0 large enough such that

∫ +∞

Tε

sg(γ (t))‖γ̇ (t)‖dt ≤ ε.

Using convexity, Cauchy-Schwarz inequality and (4.2) we deduce that for all tn > Tε

we have:

g(γ (tn)) ≤ g(v) + 〈h(tn), γ (tn) − v〉
≤ g(v) + |〈h(tn), v〉| + |〈h(tn), γ (tε)〉| +

∫ tn

Tε

|〈h(tn), γ̇ (s)〉|ds

≤ g(v) + |〈h(tn), v〉| + |〈h(tn), γ (tε)〉| +
∫ tn

Tε

sg(γ (tn)) ‖γ̇ (s)‖ds

≤ g(v) + sg(γ (tn))‖v‖ + sg(γ (tn))‖γ (tε)‖ +
∫ tn

Tε

sg(γ (s))‖γ̇ (s)‖ds
n→∞−−−→ g(v) +

∫ +∞

Tε

sg(γ (s))‖γ̇ (s)‖ds ≤ g(v) + ε.

123



A slope generalization of Attouch theorem

Thus, for every ε > 0 and every v ∈ dom g, we have that

lim inf
t→+∞ g(γ (t)) ≤ lim inf

n→∞ g(γ (tn)) ≤ g(v) + ε.

Thus, lim inf t→+∞g(γ (t)) = inf g, finishing the proof of this part.
(ii). The first conclusion of the second part is given by [27, Lemma 3.1] and the

proof is very similar of the latter development, but using that s f (γ (t)) is nonincreasing
as t → +∞. For the last part, it is enough to write

inf g − g(x̄) = lim inf
t→∞

∫ t

0

d

dt
[g ◦ γ ](τ ) dτ = lim inf

t→∞

∫ t

0
〈∂◦g(γ (τ )), γ̇ (τ )〉 dτ

≥︸︷︷︸
Cauchy−Schwarz

− lim sup
t→∞

∫ t

0
sg(γ (τ ))‖γ̇ (τ )‖ dτ ≥︸︷︷︸

s f ≥sg

− lim
t→∞

∫ t

0
s f (γ (τ ))2 dτ

= lim
t→∞

∫ t

0
〈∂◦ f (γ (τ )), γ̇ (τ )〉 dτ = lim

t→∞

∫ t

0

d

dt
[ f ◦ γ ](τ )) dτ = inf f − f (x̄).

The result follows. ��
We are now ready to obtain an enhanced version of Lemma 4.5.

Lemma 4.7 Under the same assumptions as in Lemma 4.5 we conclude:

inf fu = inf f and fu ≤ f .

Proof By hypothesis inf f > −∞. Moreover, by Lemma 3.4 we obtain fu(x̄) =
f (x̄), while by Lemma 4.5 (and following notation therein) the limit curve ν =
limn→∞γn is a steepest descent curve for (the convex function) fu starting at x̄ = ν(0),
that is,

∀a.e. t∈[0,+∞) : ν̇(t)= − ∂◦ fu(ν(t)) , ‖ν̇(t)‖ = s fu (ν(t)) and fu(ν(t)) → inf fu .

(4.3)

Let us also recall from Lemma 4.2 that

s f (x) ≥ s fu (x), for all x ∈ R
d . (4.4)

By Proposition 4.6.(ii) it holds:

inf fu ≥ inf f > −∞. (4.5)

Let us set M = sup{‖x∗
n‖ : n ∈ N} = sup{s fn (xn) : n ∈ N} and notice that for

all t ≥ 0 and n ≥ 1 we have s fn (γn(t)) ≤ s fn (xn) ≤ M . We deduce easily from
Lemma 3.4 that

fu(ν(t)) = lim sup
n→+∞

fn(γn(t)), for all t ≥ 0.
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By Fatou’s Lemma and (4.4) we have

fu(ν(t)) = lim sup
n→∞

fn(γn(t)) = lim sup
n→∞

{
fn(γn(0)) −

∫ t

0
s fn (γn(τ ))2 dτ

}

= f (x̄)− lim inf
n→∞

∫ t

0
s fn (γn(τ ))2 dτ≤ f (x̄)−

∫ t

0
lim inf
n→∞ s fn (γn(τ ))2 dτ

≤ f (x̄) −
∫ t

0
s f (ν(τ ))2 dτ ≤ f (ν(t)). (4.6)

Therefore, we deduce:

∫ t

0
s f (ν(τ ))2 dτ ≤ f (x̄) − inf fu < +∞, for every t ≥ 0

and

inf fu = inf ( fu ◦ ν) ≤ lim inf
t→∞ ( f ◦ ν) .

Applying Proposition 4.6.(i) to g = f and γ = ν, and noting that

lim inf s fu (ν(t)) ≤ lim inf s f (ν(t)) = 0,

we get that lim inf t→∞ ( f ◦ ν) = inf f . We conclude that

inf fu = inf f ∈ R.

The result follows by applying Proposition 4.3. ��
We finish this subsection with the following proposition that, together with Propo-

sition 4.3, provides a partial result towards our main theorem: If (ii) or (iii) of
Theorem 1.6 hold, then fu ≤ f .

Proposition 4.8 Let f , { fn}n : R
d → R ∪ {+∞} be proper convex lsc functions such

that

s fn
e−→ s f and inf f > −∞.

Assume that there is a sequence

(xn, x
∗
n , fn(xn)) ∈ � fn and lim

n→∞ (xn, x
∗
n , fn(xn)) = (x̄, x̄∗, f (x̄)) ∈ � f .

Then

inf fu = inf f and fu ≤ f .
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Proof Let γn be the steepest descent curve of fn starting at xn = γn(0). Set

M = sup
n≥1

‖x∗
n‖

so that

s fn (γn(t)) ≤ s fn (γn(0)) = ‖x∗
n‖ ≤ M for all t ≥ 0 and n ≥ 1.

By a standard application of Arzelà-Ascoli theorem, for every strictly increasing
sequence {k1(n)}n there exists a subsequence {(k2 ◦ k1)(n)}n that we simply denote
by {kn}n such that {γkn }n uniformly converges to some Lipschitz curve on [0, T ], for
every T > 0 (as in the statement of Lemma 4.5). Up to a new subsequence, which
we keep denoting as before, {γkn }n converges to a Lipschitz curve ν uniformly on
bounded sets and {γ̇kn |[0,T ]}n converges weakly to ν̇|[0,T ] in L2([0, T ], R

d). Let

fu,kn := e− limsup fkn , for all n ≥ 1.

Thanks to Lemma 4.7, we have fu,kn ≤ f . Since this holds true for any sequence
{kn}n such that {γkn }n converges (as in the statement of Lemma 4.7), we can claim
that fu ≤ f .

Indeed, for any y ∈ dom s f , there is a sequence {yn}n such that
(yn, s fn (yn)) → (y, s f (y)). By Lemma 3.4, there exists a subsequence
{k1(n)}n such that fu(x) = limn fk1(n)(yk1(n)). ByArzelà-Ascoli theorem, there exists
a sub-subsequence {k2(k1(n)}}n such that for k = k2 ◦ k1 the sequence of the steepest
descend curves {γkn }n converges to a curve ν (as in the statement of Lemma 4.7) and
we get fu,kn ≤ f . Therefore, thanks to Lemma 3.4, we infer that

fu(y) = fu,kn (y) ≤ f (y).

Since y is an arbitrary vector in dom s f , we obtain fu ≤ f on dom s f . Now, recall-
ing Proposition 4.1, f and fu are convex lsc functions and it is enough to apply
Proposition 3.2 and Lemma 3.5 to conclude that fu ≤ f on R

d . ��

4.2 Controlling the gap between upper and lower epigraphical limits

Let us first recall the following important result from [12, Lemma 2.4].

Proposition 4.9 Let fn : R
d → R ∪ {+∞} be convex lsc functions such that there

exists a sequence (xn, x∗
n , fn(xn)) ∈ � fn, n ≥ 1, such that

lim
n→∞ (xn, x

∗
n , fn(xn)) = (x̄, x̄∗, α) ∈ R

d × R
d × R.

Then,

x̄∗ ∈ ∂ fu(x̄) ∩ ∂ fl(x̄) and α = fl(x̄) = fu(x̄).
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Proof By Lemma 3.4, we have fl(x̄) = fu(x̄) = limn fn(x̄). Then, for any y ∈ R
d

and any sequence {yn}n ⊂ R
d converging to y, we have

fn(yn) ≥ fn(xn) + 〈x∗
n , yn − xn〉, for all n ≥ 1.

The desired conclusion follows by taking lim sup and lim inf to the above expression.
��

The following result states that epigraphical convergence of the sequence of slope
functions guarantees the local Lipschitz continuity of the lower epigraphical limit
function fl under a mild condition.

Proposition 4.10 Let f , { fn}n : R
d → R ∪ {+∞} be proper convex lsc functions.

Assume that {s fn }n epigraphically converges to s f . Assume further that there is a
sequence {xn}n ⊂ R

d converging to x̄ such that {s fn (xn)}n is bounded and { fn(xn)}n
converges. Then, fl is locally Lipschitz on ri(dom fl).

Proof Since f is convex and lsc, we know by Proposition 3.1 that ri(dom s f ) is a
convex set. Thus, thanks to Lemma 3.5, we have that ri(dom fl) = ri(dom s f ). Let
y, z ∈ dom s f and let {yn}n, {zn}n ⊂ R

d be two sequences convergent to y and z,
such that {s fn (yn)}n and (s fn (zn))n converge to s f (y) and s f (z), respectively. By
Lemma 3.4, we get that fl(y) = lim infn fn(yn) and fl(z) = lim infn fn(zn). Take a
subsequence (kn)k such that fkn (ykn ) → fl(y). Then,

fl(y) − fl (z) = lim inf
n→∞ fn(yn) − lim inf

n→∞ fn(zn) ≥ lim
n→∞ fkn (ykn ) − lim inf

n→∞ fkn (zkn )

≥ lim inf
n→∞

(
fkn (ykn ) − fkn (zkn )

) ≥ lim inf
n→∞

{−s fkn (zkn ) ‖ykn − zkn‖
}

= −s f (z) ‖y − z‖.

Since s f is locally bounded on ri(dom s f ) = ri(dom fl), we get that fl is locally
Lipschitz on ri(dom fl). This finishes the proof. ��
Remark 4.11 Observe that, under the same assumptions, the proof of Proposition 4.10
shows that that s fl ≤ s f on dom s f .

Wefinish this subsectionwith the next proposition showing that, by taking a suitable
subsequence, we can eliminate the gap between lower and upper epigraphical limits.

Proposition 4.12 Let f , { fn}n : R
d → R ∪ {+∞} be proper convex lsc functions.

Assume that {s fn }n epigraphically converges to s f and that there exists some sequence
(xn, x∗

n , fn(xn)) ∈ � fn that converges to (x̄, x̄∗, α) ∈ R
d × R

d × R. Then,

fl(x̄) = fu(x̄) = α,

and for some strictly increasing sequence {kn}n we have

fl,kn = fu,kn .
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Proof Let us first observe that thanks to Proposition 4.9 we have fl(x) = fu(x) = α.
Let now

D = {zi }∞i=1 ⊂ ri(dom s f )

be a dense countable set. For i = 1, let {z1,n}n −→ z1 be such that

s fn (z1,n) −→ s f (z1) and fl(z1) = lim inf
n→∞ fn(z1,n).

Take a subsequence {k1(n)}n such that:

fl(z1) = lim
n→∞ fk1(n)(z1,k1(n)) and ∂◦ fk1(n)(z1,k1(n)) −→ ∂◦ f (z1) := z∗1.

For i = 2, consider a sequence {z2,n}n −→ z2 such that

s fn (z2,n) −→ s f (z2).

Observe that since s fk1(n)

e−→ s f , Lemma 3.5 applies and we deduce that dom s f ⊂
dom fl ,k1(n). In particular, fl,k1(n)(z2) ∈ R.

Replacing {z2,n}n by its subsequence {z2,k1(n)}n we still have
s fk1(n)

(zi,k1(n)) −→ s f (zi ), i ∈ {1, 2}. Then taking a sub-subsequence {k2(k1(n))}n
we can ensure that

∂◦ f(k2◦k1)(n)(z2,(k2◦k1)(n)) −→ ∂◦ f (z2) := z∗2 and lim
n→∞ f(k2◦k1)(n)(z2,(k2◦k1)(n)) exists in R.

We set k̄2 := k2 ◦ k1. Using induction, for every m > 1, we obtain a subsequence
k̄m = km ◦ . . . ◦ k1 such that for all i ∈ {1, . . .m} we have:

{zi,k̄i (n)}n −→ zi fl(zi ) = lim
n→∞ fk̄i−1

(zi,k̄i (n))

and ∂◦ fk̄i (n)(z1,k̄i (n)) −→ ∂◦ f (zi ) := z∗i .

A standard diagonal argument ensures that for every i ∈ N the sequence {k̄n(n)}n≥i

is subsequence of {k̄i (n)}n≥i . Therefore, thanks to Lemma 3.4 and the construction,
we obtain:

fl,k̄n(n)(zi ) = lim
n→∞ fk̄n(n)(zi,k̄n(n)) = fu,k̄n(n)(zi ), ∀zi ∈ D.

Since fu,n(k) is convex and lsc, using Proposition 4.10 and Lemma 3.5 we deduce that

fl,k̄n(n) = fu,k̄n(n) on ri(dom s f ).

Thanks to Proposition 4.9,

z∗i ∈ ∂ fu,k̄n(n)(zi ) ∩ ∂ fl,k̄n(n)(zi ).
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Let us now define a function L : R
d → R ∪ {+∞} by

L(z) := sup
i∈N

{
fu,k̄n(n)(zi ) + 〈z∗i , z − zi 〉

}
, for all z ∈ R

d .

It is straightforward from the definition that L is a lsc convex function and

L ≤ min
{
fu,k̄n(n), fl,k̄n(n)

}
on the whole space. Notice further that L = fu,k̄n(n)

on ri(dom s f ). Then, since fu is convex (by Proposition 4.1) and ri(dom s f ) is a con-
vex set (by Proposition 3.1), we can apply Proposition 3.2 to get L = fu,k̄n(n) on
cl(dom(s f )), yielding

fl,k̄n(n) ≥ fu,k̄n(n) on cl(dom(s f )).

Finally, thanks to Lemma 3.5, we conclude that fl,k̄n(n) = fu,k̄n(n) on R
d . ��

5 Main result, final comments and perspectives

We are now ready to establish the implications (ii)⇒(i) and (iii)⇒(i) of our main
result (Theorem 1.6).

Theorem 5.1 Let f , { fn}n : R
d → R∪{+∞} be proper convex lsc functions such that

inf f ∈ R. Assume that {s fn }n epigraphically converges to s f and for some sequence
(xn, x∗

n , fn(xn)) ∈ � fn, n ≥ 1 we have:

lim
n→∞ (xn, x

∗
n , fn(xn)) = (x̄, x̄∗, f (x̄)) ∈ � f .

Then fn
e−→ f .

Proof We only need to show that f ≤ fl since Proposition 4.8 ensures that fu ≤ f .
Let y ∈ dom fl . We claim that there exists a sequence {yn}n ⊂ R

d such that

s fn (yn) −→ s f (y) and fl(y) = lim inf
n→∞ fn(yn). (5.1)

Indeed, we distinguish two cases:

• Case 1: s f (y) < +∞.

In this case, since s fn
e−→ s f , we can choose {yn}n such that s f (y) = limn s fn (yn)

and apply Lemma 3.4 to deduce that fl(y) = lim infn fn(yn).

• Case 2: s f (y) = +∞.

In this case, every sequence {yn} that converges to y should verify that
limn→∞s fn (yn) = +∞. Among these sequences, we chose one such that fl(y) =
lim inf
n→∞ fn(yn) (c.f. Remark 1.3). Therefore (5.1) holds and the claim is proved.

123



A slope generalization of Attouch theorem

Let now {k1(n)}n be a strictly increasing subsequence such that

fl(y) = lim inf
n→∞ fn(yn) = lim

n→∞ fk1(n)(yk1(n)).

ApplyingProposition 4.12 to the sequence { fk1(n)}n≥1 weget a subsequence k = k2◦k1
of {k1(n)}n , such that fu,kn = fl,kn =: g. Observe that fkn epi-converges to g and
that g is proper convex lsc. Thus, Theorem 2.1 ensures that {s fk(n)

}n epigraphically
converges to sg . Therefore sg = s f . Applying Proposition 4.8 to { fkn }n and f , we
deduce that inf g = inf fu,kn = inf f ∈ R. Thus, we can apply [27, Corollary 3.1]
(or apply twice Theorem 1.2) to deduce that f = g. In particular,

f (y) = g(y) = fl,kn (y) ≤ lim
n→∞ fkn (ykn ) = fl(y).

Since y is arbitrary, we deduce f ≤ fl . The proof is complete. ��
Theorem 5.2 Let f , { fn}n : R

d → R ∪ {+∞} be proper convex lsc functions with
inf f ∈ R. Assume that {s fn }n epigraphically converges to s f and

inf fu = inf f = inf fl ∈ R.

Then { fn}n epigraphically converges to f .

Proof We follow the arguments of the proof of Theorem 5.1 with slight modifications.
Indeed, it suffices to show f ≤ fl since Proposition 4.3 ensures that fu ≤ f . To
this end, we only need to show that f (y) ≤ fl(y) for all y ∈ dom fl . Fix such
y ∈ dom fl and choose again a sequence {yn}n ⊂ R

d such that s fn (yn) → s f (y) and
fl(y) = lim infn fn(yn). Take {kn}n be an increasing subsequence such that

fl(y) = lim inf
n→∞ fn(yn) = lim

n→∞ fkn (ykn ).

The main difference, with respect to the proof of Theorem 5.1, is that in order to
apply Proposition 4.12 to { fkn }n we need to ensure the existence of a sequence
(xkn , x

∗
kn

, fkn (xkn )) ∈ � fkn that converges (up to a subsequence) to some point
(x, x∗, α). Since f is proper, there exists at least one point x ∈ dom s f and
sequence {xm}m converging to x such that s fkm (xkm ) converges to s f (x). Take
x∗
m := ∂◦ fk(m)(xm). Using Lemma 3.4, the hypothesis that inf fl = inf f , and the
fact that fu ≤ f , we can write

inf f ≤ fl(x) ≤ fl,k(m)(x) = lim inf
m→∞ fk(m)(xm)

≤ lim sup
m→∞

fk(m)(xm) = fu,k(m)(x) ≤ fu(x) ≤ f (x).

Thus, { fk(m)(xm)}m is a bounded sequence. We deduce that {(xm, fk(m)(xm)), x∗
m)}m

is also a bounded sequence, thus it converges, up to a second subsequence. Therefore,
we can apply Proposition 4.12 to the sequence of functions { fk(m)}m . The rest of the
proof follows exactly the lines of Theorem 5.1. ��

123



A. Daniilidis et al.

Remark 5.3 Due to the fact that in our main result, Theorem 1.6, the limit function
f is bounded from below, we can slightly generalize it by replacing (NC) with the
following weaker condition:

(̃NC) There exist x ∈ dom ∂ f and a sequence {xn}n ⊂ R
d such that:

lim
n→+∞(xn, fn(xn)) = (x, f (x)) and {s fn (xn)}n is bounded.

Open problems: This work is motivated by the celebrated Attouch theorem (Theo-
rem 1.4), the determination result of slopes [27], and the sensitivity result of [14]. All
of these results are valid in Hilbert spaces, while the first two are also valid in Banach
spaces (see [4, 12] and [33]). Therefore, a natural question is whether Theorem 1.6 (our
main result) is true in Hilbert spaces, or more generally, in reflexive Banach spaces
(or even in general Banach spaces). While there is no obvious obstruction for this
extension, the present work relies heavily on local compactness of the space, for many
of its intermediate results and consequently any potential extension should rather rely
in a completely different approach.

In [7], a quantified version of Attouch theorem has been obtained. Indeed, the
authors introduced the epi-distance topology and showed (c.f. [7, Theorem 4.2]) that
in finite dimensional spaces, it corresponds to the topology of epi-convergence. Then
in [7, Theorem 5.2], they showed how the (truncated) graph distance of the subdiffer-
entials of two convex lsc functions is controlled by their (truncated) epi-distance. The
mentioned result suggests that a quantified slope-version of Attouch theorem, that is,
a slope generalization of [7, Theorem 5.2] is worth to be investigated.

Amuch more ambitious project would be to extend the result to pure metric spaces,
without vector structure, according to the spirit of the determination results [15, 17].
One might focus on the notions of convexity that have been coined for metric spaces
(see, e.g., [1]). This is amore challenging task, but the perspective of obtaining ametric
version of Attouch theorem with its insight on variational deviations is tempting and
should be explored in the future.
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