Filling the gap between lower- C^1 and lower- C^2 functions

ARIS DANIILIDIS & JÉRÔME MALICK

Abstract The classes of lower- $C^{1,\alpha}$ functions $(0 < \alpha \leq 1)$, that is, functions locally representable as a maximum of a compactly parametrized family of continuously differentiable functions with α -Hölder derivative, are hereby introduced. These classes form a strictly decreasing sequence from the larger class of lower- $C¹$ towards the smaller class of lower- $C²$ functions, and can be analogously characterized via perturbed convex inequalities or via appropriate generalized monotonicity properties of their subdifferentials. Several examples are provided and a complete classification is given.

Key words Maximum function, lower- $C^{1,\alpha}$ function, α -weakly convex function, α hypomonotone operator.

AMS Subject Classification Primary 26B25; Secondary 49J52, 47H05.

1 Introduction

Let U be an open subset of \mathbb{R}^n and $k \in \mathbb{N}^*$. A function $f: U \to \mathbb{R}$ is called lower- C^k (in short, LC^k), if for every $x_0 \in U$ there exist $\delta > 0$, a compact topological space S, and a jointly continuous function $F : B(x_0, \delta) \times S \to \mathbb{R}$ satisfying

$$
f(x) = \max_{s \in S} F(x, s), \quad \text{for all } x \in B(x_0, \delta),
$$

and such that all derivatives of F up to order k with respect to x exist and are jointly continuous. It is easily seen that every such function is locally Lipschitz. In particular, LC^k functions provide a robust extension of both convexity and smoothness. For their role in optimization we refer to the survey [8] and to [18]; see also [17] for extensions in Hilbert spaces.

The class of $LC¹$ functions is first introduced by Spingarn in [22]. In that work, Spingarn shows that these functions are (Mifflin) semi-smooth and Clarke regular, and that are characterized by a generalized monotonicity property of their subgradients, called submonotonicity. Recently, in [5, Corollary 3], it has been pointed out that the class of $LC¹$ functions coincides with the class of locally Lipschitz approximately convex functions. We recall that a function $f: U \to \mathbb{R}$ is called *approximately convex* on U if for every $x_0 \in U$ and $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in B(x_0, \delta)$ and all $t \in [0, 1]$

$$
f(tx + (1-t)y) \leqslant tf(x) + (1-t)f(y) + \varepsilon t(1-t) \|x - y\|.
$$
 (1)

The above notion (introduced in [14], [15]) corresponds to a first order relaxation of convexity and is strongly related to the notion of α -paraconvexity studied in [11], [20]. A more general class – corresponding to the case that the ε of the above definition is always bounded below away from $0 -$ is recently considered in [16] for functions on the real line: these functions (which are not Clarke regular in general) are characterized by their local decomposability into a sum of a convex and a Lipschitz function. We refer also to [9] and [7] for related notions.

Shortly after Spingarn's work, the (smaller) class of LC^2 functions has been introduced and studied by Rockafellar [18]. In that work the following important results are established:

- for every $k \geqslant 2$, the class of LC^k functions coincides with the class of LC^2 functions;
- LC^2 are exactly the locally Lipschitz weakly convex functions.

We recall that a function $f: U \to \mathbb{R}$ is called *weakly convex* on U if for every $x_0 \in U$, there exist $\sigma > 0$ and $\delta > 0$ such that for all $x, y \in B(x_0, \delta)$ and $t \in (0, 1)$

$$
f(tx + (1-t)y) \leqslant tf(x) + (1-t)f(y) + \sigma t(1-t)||x - y||^2.
$$
 (2)

Let us note that LC^2 functions are characterized by the fact that they are locally decomposable into a sum of a convex continuous function and a concave quadratic function (see [23], [18], [10] e.g.). The existence of a similar decomposition for the class of $LC¹$ functions remains open (see also Remark 12).

Remark 1 (terminology issues) We wish to draw the attention of the reader on some terminology issues: speaking about locally Lipschitz functions, the classes of weakly convex functions [23], of prox-regular (or proximal retract) functions [2] and of prime-lower nice functions [21] all coincide with the class of LC^2 functions. See also [1], [4], [21] and references therein for related topics.

In this paper, we consider the class of lower- $C^{1,\alpha}$ functions (in short, $LC^{1,\alpha}$), where $0 < \alpha \leq 1$. Roughly speaking, these are LC^1 functions of the form $f(x) = \max_{s \in S} F(x, s)$ for which $\nabla_x F(x, s)$ is α -Hölder (see exact definition in Section 2). We shall show that every such function is characterized by the α -hypomonotonicity (Definition 5) of its (Clarke) subdifferential and enjoys an alternative geometrical description as a $(1 + \alpha)$ -order perturbation of convexity (see Theorem 8). In particular, as the notation suggests, for $\alpha = 1$ we recover the class of LC^2 functions (see Remark 9).

2 Prerequisites and definitions

Let $f: U \to \mathbb{R}$ be a locally Lipschitz function defined in an open subset U of \mathbb{R}^n . For every $x_0 \in U$, the (Clarke) generalized derivative of f at x_0 is defined as follows:

$$
f^{o}(x_0; d) := \limsup_{(y,t)\to(x_0,0+)} \frac{f(y+td) - f(y)}{t}
$$
, for all $d \in \mathbb{R}^n$.

It follows (see [3, Proposition 2.1.1], for example) that $d \mapsto f^o(x_0; d)$ is a continuous sublinear functional, so that the Clarke subdifferential $\partial f(x_0)$ of f, that is, the set

$$
\partial f(x_0) = \{ x^* \in \mathbb{R}^n : f^o(x_0; d) \geq \langle x^*, d \rangle, \forall d \in \mathbb{R}^n \}
$$
\n(3)

is nonempty. In particular, the multivalued operator $\partial f : \mathbb{R}^n \implies \mathbb{R}^n$ given by (3) if $x \in U$ and being empty for $x \in \mathbb{R}^n \setminus U$ is called subdifferential of f. If f is a C^1 function then $\partial f(x) = \{\nabla f(x)\}\)$, for all $x \in U$. Natural operations in optimization (as for instance taking the maximum of an index family of differentiable functions) often lead to nonsmooth functions, in which case ∂f is used to substitute the derivative. We refer to the classical textbooks [3], [4] and [19] for details and applications to optimization.

In this work we study a particular class of maximum-type locally Lipschitz functions. Let us give the following definition.

Definition 2 (lower-C^{1, α **} function)** Let U be an open set of \mathbb{R}^n , and $0 < \alpha \leq 1$. A locally Lipschitz function $f: U \to \mathbb{R}$ is called lower- $C^{1,\alpha}$ at $x_0 \in U$, if there exist a non-empty compact set S, positive constants $\delta, \sigma > 0$ and a continuous function F: $B(x_0, \delta) \times S \to \mathbb{R}$ which is differentiable with respect to the x-variable, such that

$$
f(x) = \max_{s \in S} F(x, s), \quad \text{for all } x \in B(x_0, \delta),
$$

where $\nabla_x F(x, s)$ is (jointly) continuous and

$$
||\nabla_x F(y,s) - \nabla_x F(x,s)|| \leq \sigma ||y-x||^{\alpha}, \qquad (4)
$$

for all $x, y \in B(x_0, \delta)$ and all $s \in I(x) \cup I(y)$, where

$$
I(x) = \{ s^* \in S : f(x) = F(x, s^*) \}.
$$
 (5)

We say that f is lower- $C^{1,\alpha}$ on U (and we denote $f \in LC^{1,\alpha}$) if the above definition is fulfilled at every $x \in U$. Removing condition (4) from Definition 2 or setting $\alpha = 0$, we obtain the definition of the lower- $C¹$ function given in the introduction. Hence, the above definition is a strengthening of the lower- $C¹$ property. In Subsection 3.3 we provide an example of a LC^1 function that is not $LC^{1,\alpha}$ for any $\alpha > 0$ (see Proposition 13).

Similarly to Definition 2, the following notion strengthens the notion of approximate convexity defined in (1).

Definition 3 (α -weakly convex function) Let U be a nonempty open subset of \mathbb{R}^n and $0 < \alpha \leq 1$. A locally Lipschitz function $f: U \to \mathbb{R}$ is called α -weakly convex at $x_0 \in U$, if there exist $\sigma > 0$ and $\delta > 0$ such that for all $x, y \in B(x_0, \delta)$ and $t \in (0, 1)$

$$
f(tx + (1-t)y) \leqslant tf(x) + (1-t)f(y) + \sigma t(1-t)||x - y||^{1+\alpha}.
$$
 (6)

The function f is called α -weakly convex, if it is α -weakly convex at every $x \in U$.

Remark 4 Taking $\alpha = 1$ in the above definition corresponds to the notion of weak convexity, see (2). On the other hand, the value $\alpha = 0$ has no practical interest. It yields a notion which is strictly weaker that approximate convexity (since "for every $\varepsilon > 0$ " has been replaced by "there exists $\sigma > 0$ ") and which does not ensure the Clarke regularity of the function.

Finally we need the notion of α -hypomonotone operator, which lies strictly between submonotonicity and hypomonotonicity.

Definition 5 (α **-hypomonotone operator)** Let U be a nonempty open subset of \mathbb{R}^n and $0 < \alpha \leq 1$. A multivalued mapping $T: U \rightrightarrows \mathbb{R}^n$ is called α -hypomonotone at $x_0 \in U$, if there exist $\sigma > 0$ and $\delta > 0$ such that for all $x, y \in B(x_0, \delta), x^* \in \partial f(x)$ and $y^* \in \partial f(y)$ we have

 $\langle y^* - x^*, y - x \rangle \geqslant -\sigma ||y - x||^{1+\alpha}$. (7)

The operator T is called α -hypomonotone, if it is α -hypomonotone at every $x \in U$.

Remark 6 An analogous remark applies here. Setting $\alpha = 1$ we recover the notion of hypomonotonicity, while the value $\alpha = 0$ has no interest for our purposes.

3 Main results

In Subsection 3.1 we establish subdifferential and mixed characterizations of the class of lower- $C^{1,\alpha}$ functions, while in Subsection 3.2 we show the coincidence of that class with the class of locally Lipschitz α -weakly convex functions and give an epigraphical characterization. These results are in the spirit of [22], [5], [15] (for approximately convex functions) and of [18], [4], [2] (for weakly convex functions). We also quote [4] and [1] for a study of epigraphical properties of such functions.

In Subsection 3.3 we give a complete classification of the aforementioned classes and examples distinguishing them. We also present subclasses with a particular interest in optimization.

3.1 Subdifferential characterizations

The following result is an expected characterization of α -weak convexity.

Theorem 7 (characterizations) Let U be an open set of \mathbb{R}^n and $f: U \to \mathbb{R}$ a locally Lipschitz function. The following statements are equivalent:

(i) f is α -weakly convex on U;

(ii) ∂f is α -hypomonotone on U;

(iii) for all $x_0 \in U$, there exist $\sigma, \delta > 0$ such that for all $x \in B(x_0, \delta)$ and $u \in \mathbb{R}^n$ with $x + u \in B(x_0, \delta),$

$$
f(x+u) \geq f(x) + \langle x^*, u \rangle - \sigma ||u||^{1+\alpha}.
$$
 (8)

Proof. (i) \Rightarrow (iii). Fix $x_0 \in U$, $\sigma > 0$, $\delta > 0$ given by Definition 3. Let us consider any $x \in B(x_0, \delta)$ and $u \in \mathbb{R}^n$ such that $x + u \in B(x_0, \delta)$. Then for $z \in B(x_0, \delta)$ sufficiently closed to x and such that $z + u \in B(x_0, \delta)$, one has

$$
f(z + tu) \leq t f(z + u) + (1 - t)f(z) + \sigma t(1 - t) ||u||^{1 + \alpha}
$$

or equivalently

$$
\frac{f(z+tu)-f(z)}{t} \leq f(z+u)-f(z)+\sigma(1-t) ||u||^{1+\alpha}
$$

Taking the "limsup" when $z \to x$ and $t \to 0^+$ in both sides, one gets

 $f^o(x; u) \leq f(x + u) - f(x) + \sigma ||u||^{1+\alpha}$

which in view of (3) yields the result.

 $(iii) \Rightarrow (ii)$. Fix $x_0 \in U$, $\sigma > 0$, $\delta > 0$ and take any $x, y \in B(x_0, \delta)$, $x^* \in \partial f(x)$ and $y^* \in \partial f(y)$. Then one has

$$
f(y) \ge f(x) + \langle x^*, y - x \rangle - \sigma ||x - y||^{1 + \alpha}
$$
 and $f(x) \ge f(y) + \langle y^*, x - y \rangle - \sigma ||x - y||^{1 + \alpha}$

which by addition yields

$$
\langle x^* - y^*, x - y \rangle \geqslant -2\sigma ||x - y||^{1+\alpha}.
$$

This shows the α -hypomonotonicity of ∂f .

(ii) \Rightarrow (i). Suppose ∂f is α -hypomonotone and let $\sigma > 0$, $\delta > 0$ as in Definition 5. Fix $x_1, x_2 \in B(x_0, \delta)$ and for any $t \in (0, 1)$ set $x_t = tx_1 + (1 - t)x_2$ so that

$$
x_t - x_1 = (1 - t)(x_2 - x_1) \quad \text{and} \quad x_t - x_2 = t(x_1 - x_2). \tag{9}
$$

By the Lebourg mean value theorem (see [12] or [3, Theorem 2.3.7]), for every $i \in \{1,2\}$ there exists $z_i \in [x_i, x_t]$ and $z_i^* \in \partial f(z_i)$ such that

$$
f(x_t) = f(x_i) + \langle z_i^*, x_t - x_i \rangle.
$$
 (10)

Multiplying (10) respectively by t for $i = 1$ and by $(1 - t)$ for $i = 2$ and adding the resulting inequalities we conclude in view of (9) that

$$
f(x_t) = tf(x_1) + (1-t)f(x_2) - t(1-t)\langle z_1^* - z_2^*, x_1 - x_2 \rangle.
$$
 (11)

Since

$$
\frac{x_1 - x_2}{||x_1 - x_2||} = \frac{z_1 - z_2}{||z_1 - z_2||},
$$

the definition of α -hypomonotonicity implies

$$
\langle z_1^*-z_2^*,x_1-x_2\rangle \geq -\sigma||z_1-z_2||^{\alpha}||x_1-x_2|| \geq -\sigma||x_1-x_2||^{1+\alpha},
$$

so (11) yields

$$
f(x_t) \leqslant tf(x) + (1-t)f(y) + \sigma t(1-t) ||x - y||^{1+\alpha},
$$

which ends the proof. \Box

Let us note that the property that f is locally Lipschitz is only used for the implication $(ii) \Rightarrow (i)$, in which the Lebourg mean value theorem for locally Lipschitz functions was needed. All other implications can be adapted to the case that f is lower semicontinuous and ∂f is its Clarke-Rockafellar subdifferential (we refer to [3] or [4] for the corresponding definition).

3.2 Coincidence of α -weakly convex and $LC^{1,\alpha}$ functions

Let us now show the coincidence of the classes of locally Lipschitz α -weakly convex functions (Definition 3) and of $LC^{1,\alpha}$ functions (Definition 2). This result comes to complete statements of similar nature, previously established in [5, Corollary 3] (for approximately convex functions) and in [18], [23] (for weakly convex functions).

Theorem 8 (coincidence result) Let U be a nonempty open subset of \mathbb{R}^n and let $0 <$ $\alpha \leq 1$. Then a locally Lipschitz function $f: U \to \mathbb{R}$ is lower- $C^{1,\alpha}$ if and only if f is α-weakly convex.

Proof. (\Rightarrow). Let us assume that f is lower- $C^{1,\alpha}$ and let us fix any $x_0 \in U$. Then let us consider $\delta, \sigma > 0$, a nonempty compact set S and a continuous function $F(x, s)$ according to the Definition 2 so that

$$
f(x) = \max_{s \in S} F(x, s), \text{ for all } x \in B(x_0, \delta),
$$

and

$$
||\nabla F(y,s) - \nabla F(x,s)|| \leq \sigma ||y-x||^{\alpha},
$$

for all $x, y \in B(x_0, \delta)$ and $s \in I(x) \cup I(y)$. Let $x \in B(x_0, \delta)$ and $u \in \mathbb{R}^n$ be such that $x + u \in B(x_0, \delta)$ and set $y = x + u$. Since S and $I(x)$ are compact, it follows (see [19, Theorem 10.31]) that

$$
\partial f(x) = \text{co }\{\nabla F(x, s), \ s \in I(x)\},
$$

where co (A) denotes the convex hull of a set A. For any $x^* \in \partial f(x)$, by the Caratheodory where co (A) denotes the convex null of a set A. For any $x \in \partial f(x)$, by the Caratheodory
theorem, there exist $\lambda_1, \ldots, \lambda_{n+1}$ in \mathbb{R}_+ with $\sum_i \lambda_i = 1$ and s_1, \ldots, s_{n+1} in $I(x)$ such that

$$
x^* = \sum_{i=1}^{n+1} \lambda_i \nabla F(x, s_i).
$$

Applying for every $i \in \{1, \ldots, n+1\}$ the classical mean-value theorem to the differentiable function $x \mapsto F(x, s_i)$ we obtain $z_i \in [x, y]$ such that

$$
F(y, s_i) - F(x, s_i) = \langle \nabla F(z_i, s_i), y - x \rangle.
$$

Since $s_i \in I(x)$, we have successively

$$
f(y) \geq F(y, s_i)
$$

= $F(x, s_i) - \langle \nabla F(z_i, s_i), y - x \rangle$
= $f(x) + \langle \nabla F(x, s_i), y - x \rangle + \langle \nabla F(z_i, s_i) - \nabla F(x, s_i), y - x \rangle.$

Multiplying by $\lambda_i \geq 0$ and adding the resulting inequalities for $i \in \{1, \ldots, n+1\}$ we obtain (recalling $y = x + u$) that

$$
f(x+u) \geqslant f(x) + \langle x^*, u \rangle + \sum_{i=1}^{n+1} \lambda_i \langle \nabla F(z_i, s_i) - \nabla F(x, s_i), u \rangle.
$$
 (12)

Since $s_i \in I(x)$ for $i \in \{1, \ldots, n+1\}$, relation (4) yields

$$
\langle \nabla F(z_i, s_i) - \nabla F(x, s_i), u \rangle \leq \sigma ||u|| \, ||z_i - x||^{\alpha}.
$$

Since $z_i \in [x, y]$ this yields

$$
\langle \nabla F(z_i, s_i) - \nabla F(x, s_i), u \rangle \leq \sigma ||u|| ||y - x||^{\alpha} = \sigma ||u||^{1+\alpha}.
$$

Replacing into (12) we get

$$
f(x+u) \geq f(x) + \langle x^*, u \rangle - \sigma ||u||^{1+\alpha},
$$

so the assertion follows from Theorem 7 (iii) \Rightarrow (i).

(←). Conversely, let us assume f is α -weakly convex and let us consider $x_0 \in U$. Then for some $\sigma, \delta > 0$ and all $y, z \in B(x_0, \delta), z^* \in \partial f(z)$ we have

$$
f(y) \geq f(z) + \langle z^*, y - z \rangle - \sigma ||y - z||^{1+\alpha}.
$$
 (13)

Taking eventually $\tilde{\sigma} > \sigma$, we may assume that the above inequality is strict for all $y \neq \sigma$ $z \in B(x_0, \delta)$ and all $z^* \in \partial f(z)$. Set

$$
S = \left\{ (z, z^*) \in \mathbb{R}^n \times \mathbb{R}^n, \quad ||z - x_0|| \leq \frac{\delta}{2}, \ z^* \in \partial f(z) \right\}
$$

Since ∂f is locally bounded and has a closed graph (see [3, Proposition 2.1.5], for example) it follows that S is compact. Moreover, S is nonempty since it contains the set $\{x_0\} \times$ $\partial f(x_0)$. Let us now define

$$
F : B(x_0, \delta/2) \times S \longrightarrow \mathbb{R}
$$

$$
(x, (z, z^*)) \longmapsto F(x, (z, z^*)) := f(z) + \langle z^*, x - z \rangle - \sigma ||x - z||^{1+\alpha}.
$$

Then for every $x \in B(x_0, \delta/2)$ and every $s = (z, z^*) \in S$ we have in view of (13) (and the choice of $\sigma > 0$) that

$$
f(x) \geqslant F(x,(z,z^*))
$$

with strict inequality whenever $x \neq z$. Thus for every $x \in B(x_0, \delta/2)$

$$
f(x) = \max_{(z,z^*) \in S} F(x,(z,z^*)),
$$

and

$$
I(x) = \{x\} \times \partial f(x).
$$

Note also that

$$
\nabla_x F(x,(z,z^*)) = \begin{cases} z^* - \sigma(1+\alpha) \left| |x-z| \right|^{\alpha-1} (x-z) & \text{if } x \neq z \\ z^* & \text{if } x = z \end{cases}
$$

Let now any $x, y \in B(x_0, \delta)$ and $s = (z, z^*) \in I(x) \cup I(y)$. It follows that $z \in \{x, y\}$. Let us suppose (with no loss of generality) that $z = y$. Then

$$
||\nabla_x F(y,s) - \nabla_x F(x,s)|| = \sigma(1+\alpha) ||y-x||^{\alpha}.
$$

Thus (4) of Definition 2 holds. To complete the proof, it suffices to check the continuity of $\nabla_x F(x,(z,z^*))$ on $B(x_0,\delta) \times S$. This is clear at every point $(x,(z,z^*))$ with $x \neq z$, so let us suppose that $x = z$, that is, $(x,(z,z^*)) = (x,(x,z^*))$ and let $(x_n,(z_n,z_n^*))_{n\geqslant 1}$ be a sequence of $B(x_0, \delta) \times S$ converging to $(x, (x, z^*))$. For all $n \in \mathbb{N}$ such that $x_n \neq z_n$ we have

$$
\begin{aligned} &\left|\left|\nabla_x F(x,(x,z^*)) - \nabla_x F(x_n,(z_n,z_n^*))\right|\right| \\ &= \left|\left|z^* - z_n^* + \sigma(1+\alpha)\right|\left|x_n - z_n\right|\right|^{\alpha-1}(x_n - z_n)\right| \\ &\leqslant \left|\left|z^* - z_n^*\right|\right| + \sigma(1+\alpha) \left|\left|x_n - z_n\right|\right|^{\alpha} .\end{aligned}
$$

On the other hand, for all $n \in \mathbb{N}$ such that $x_n = z_n$ we have

$$
||\nabla_x F(x,(x^*,z^*)) - \nabla_x F(x_n,(x_n,z_n^*))|| = ||z^* - z_n^*||.
$$

Thus, it follows easily that

$$
||\nabla_x F(x,(x,z^*)) - \nabla_x F(x_n,(z_n,z_n^*))|| \longrightarrow 0
$$

as $(x_n, (z_n, z_n^*)) \longrightarrow (x, (x, z^*))$. This shows that $\nabla_x F$ is jointly continuous, so $f \in LC^{1,\alpha}$. ¤

Remark 9 ($LC^{1,1} \equiv LC^2$) Taking $\alpha = 1$ in the above proof we obtain that the class of the lower- $C^{1,1}$ functions and of the locally Lipschitz weakly convex functions coincide. In view of the classical result of Rockafellar [18] (recalled in the introduction), we conclude that the classes $LC^{1,1}$ and LC^2 coincide.

Let us now provide a characterization of the epigraphs of $LC^{1,\alpha}$ functions, in terms of the truncated normal cone operator. We first recall the definition of the latter: if C is a nonempty subset of a Euclidean space \mathbb{R}^m $(m \in \mathbb{N}^*)$, then the (Clarke) normal cone of C at $u \in C$ is defined by

$$
N_C(u) = \{u^* \in \mathbb{R}^m : \langle u^*, v \rangle \leq 0, \forall v \in T_C(u)\},\tag{14}
$$

where the Clarke tangent cone $T_C(u)$ is defined as follows:

$$
v \in T_C(u) \Longleftrightarrow \begin{cases} \forall \varepsilon > 0, \exists \delta > 0 \text{ such that} \\ \forall u' \in B(u, \delta) \cap C, \forall t \in]0, \delta[, \ (u' + tB(v, \varepsilon)) \cap C \neq \emptyset. \end{cases} \tag{15}
$$

We put $N_C(u) = \emptyset$, whenever $u \notin C$. For any $r > 0$ we denote by $N_C^r(u)$ the truncated Clarke normal cone, that is,

$$
N_C^r(u) = N_C(u) \cap B[0, r],
$$

where $B[0, r]$ denotes the closed ball in \mathbb{R}^m of center 0 and radius r. We further denote by

$$
epi f := \{(x, \beta) \in \mathbb{R}^{n+1} : \beta \geq f(x)\}
$$

the epigraph of the function f defined on \mathbb{R}^n . By [3, p. 56], for all $u_o = (x_0, f(x_0)) \in e$ pi f we have

$$
N_{\text{epi }f}(u_0) = \mathbb{R}^+(\partial f(x_0), -1).
$$

Let us finally note that, if f is κ -Lipschitz on a ball B of \mathbb{R}^n , then for all x_1, x_2 in B, we have √

$$
||x_2 - x_1|| \le ||u_2 - u_1|| \le \sqrt{1 + \kappa^2} ||x_2 - x_1||,
$$
\n(16)

where $u_i := (x_i, f(x_i)), i \in \{1,2\}$ and where we use the same notation to denote the Euclidean norm of the spaces \mathbb{R}^n and \mathbb{R}^{n+1} .

The following result is analogous to the ones established in [4, Section 5] (for LC^2 functions) and in [1, Theorem 4.1.4] (for LC^1 functions).

Corollary 10 (epigraphical characterization) Let $f: U \to \mathbb{R}$ be a locally Lipschitz function defined on an open subset U of \mathbb{R}^n . The following two assertions are equivalent: (i) the function f is lower- $C^{1,\alpha}$;

(ii) the operator $N^1_{\text{epi } f} : \mathbb{R}^{n+1} \rightrightarrows \mathbb{R}^{n+1}$ is α -hypomonotone.

Proof. (i) \Rightarrow (ii) Let $u_0 \in$ epi f. We can suppose without no loss of generality that $u_0 =$ $(x_0, f(x_0))$ for $x_0 \in U$ (otherwise $N_{\text{epi }f}(u)$ is reduced to $\{0\}$ for all u in a neighborhood of u_0 , so that (7) is clearly satisfied).

Let now $\kappa, \delta_1 > 0$ such that f is κ -Lipschitz on $B(x_0, \delta_1)$. By Theorem 8, the function f is weakly convex, so Theorem 7 (i)⇒(iii) yields that there exist $\delta_2 > 0$ and $\sigma > 0$ such that for all $x_1, x_2 \in B(x_0, \delta_2)$, $x_1^* \in \partial f(x_1)$ and $x_2^* \in \partial f(x_2)$

$$
f(x_2) - f(x_1) \ge \langle x_1^*, x_2 - x_1 \rangle - \sigma ||x_1 - x_2||^{1 + \alpha}.
$$
 (17)

Set $\delta = \min\{\delta_1, \delta_2\}$ and take $u_1, u_2 \in B(u_0, \delta) \cap \text{epi } f$ (we use the same notation $B(u_0, \delta)$ to denote the ball of center u_0 and radius $\delta > 0$ in the space \mathbb{R}^{n+1}). In particular, u_1 has the form (x_1, β_1) with $\beta_1 \geq f(x_1)$. There are two cases:

- If $\beta_1 > f(x_1)$, then $N_{epi\ f}^1(u_1) = \{0\}.$
- If $\beta_1 = f(x_1)$, then

$$
N_{\rm epi~f}^1(u_1) = \mathbb{R}^+(\partial f(x_1), -1) \cap B[0, 1].
$$

So for every $u_1^* \in N^1_{\text{epi }f}(u_1)$, there exists $x_1^* \in \partial f(x_1)$ such that $u_1^* = \mu_1(x_1^*, -1)$. Note also that we can bound μ_1 uniformly. Since f is κ -Lipschitz on $B(x_0, \delta)$, one has $||x_1^*|| \le \kappa$ (see [3, Proposition 2.1.2], for example). As $||u_1^*|| \le 1$, one obtains $\mu_1 \leqslant (1 + \kappa^2)^{-\frac{1}{2}}.$

Since $\beta_2 \geq f(x_2)$, (17) implies

$$
\langle (x_1^*, -1), (x_2 - x_1, \beta_2 - \beta_1) \rangle \leq \sigma ||x_1 - x_2||^{1+\alpha}.
$$

Here again we use the same notation for the scalar products in \mathbb{R}^n and in \mathbb{R}^{n+1} . In particular, $\langle (x, \alpha), (y, \beta) \rangle := \langle x, y \rangle + \alpha \beta$, for all $x, y \in \mathbb{R}^n$ and all $\alpha, \beta \in \mathbb{R}$.

In both cases, for every $u_1^* \in N^1_{\text{epi } f}(u_1)$ we have

$$
\langle u_1^*, u_2 - u_1 \rangle \leq (1 + \kappa^2)^{-\frac{1}{2}} \sigma ||x_1 - x_2||^{1+\alpha},
$$

which in view of (16) yields

$$
\langle u_1^*, u_2 - u_1 \rangle \leq (1 + \kappa^2)^{-\frac{1}{2}} \sigma ||u_1 - u_2||^{1+\alpha}.
$$

Interchanging the roles of u_1 and u_2 , for every $u_2^* \in N^1_{\text{epi }f}(u_2)$ we have

$$
\langle u_2^*, u_2 - u_1 \rangle \geqslant -(1 + \kappa^2)^{-\frac{1}{2}} \sigma ||u_1 - u_2||^{1+\alpha}.
$$

Substracting the last two equations, we get

$$
\langle u_2^* - u_1^*, u_2 - u_1 \rangle \ge -2(1 + \kappa^2)^{-\frac{1}{2}} \sigma ||u_1 - u_2||^{1+\alpha},
$$

which means that $N^1_{epi\ f}$ is α -hypomonotone.

 $(ii) \Rightarrow (i)$ Fix $x_0 \in U$ and set $u_0 = (x_0, f(x_0))$. Let δ_1 and σ such that for all $u_1, u_2 \in$ $B(x_0, \delta_1), u_1^* \in N^1_{\text{epi } f}(u_1)$ and $u_2^* \in N^1_{\text{epi } f}(u_2)$

$$
\langle u_2^* - u_1^*, u_2 - u_1 \rangle \ge -\sigma ||u_1 - u_2||^{1+\alpha}.
$$
 (18)

Let δ_2 and κ be such that f is κ -Lipschitz on $B(x_0, \delta_1)$ and set

$$
\delta = \frac{\min\{\delta_1, \delta_2\}}{\sqrt{1 + \kappa^2}}.
$$

Let $x_1, x_2 \in B(x_0, \delta), x_1^* \in \partial f(x_1)$ and $x_2^* \in \partial f(x_2)$. For $i \in \{1, 2\}$, set $u_i = (x_i, f(x_i))$ and $u_i^* := (1 + \kappa^2)^{-\frac{1}{2}} (x_i^*, -1)$. Observe that $u_i \in B(u_0, \delta_1)$ and $u_i^* \in N^1_{\text{epi } f}(u_i)$. Thus (18) can be rephrased as

$$
\langle (x_2^* - x_1^*, 0), (x_2 - x_1, f(x_2) - f(x_1)) \rangle \ge -\sigma (1 + \kappa^2)^{\frac{1}{2}} ||u_1 - u_2||^{1+\alpha}.
$$

Using (16) we get

$$
\langle x_2^* - x_1^*, x_2 - x_1 \rangle \ge -\sigma (1 + \kappa^2) ||x_1 - x_2||^{1+\alpha}.
$$

Thus ∂f is α -hypomonotone. By Theorem 7 (ii)⇒(i) and Theorem 8, we conclude that f is $LC^{1,\alpha}$. . The contract of \Box

3.3 Classification

Let us fix a nonempty open subset U of \mathbb{R}^n and let us consider the following two particular classes of functions.

– (locally decomposable functions) We say that a locally Lipschitz function f : $U \to \mathbb{R}$ is locally decomposable on U as a sum of a convex function and a $C^{1,\alpha}$ function if for all $x_0 \in U$ there exists $\delta > 0$, a convex continuous function $k : B(x_0, \delta) \to \mathbb{R}$ and a $C^{1,\alpha}$ -function $h: B(x_0, \delta) \to \mathbb{R}$ (that is, h is differentiable with α -Hölder derivative) such that

$$
f(x) = k(x) + h(x), \text{ for all } x \in B(x_0, \delta).
$$

– (locally composite functions) We say that a locally Lipschitz function $f: U \to \mathbb{R}$ is locally composite on U, if for every $x_0 \in U$ there exists $\delta > 0$, a lower semicontinuous convex function $g : \mathbb{R}^m \to \mathbb{R} \cup \{\infty\}$ and a $C^{1,\alpha}$ -function $G : B(x_0, \delta) \to \mathbb{R}^m$ such that

$$
f(x) = g(G(x)), \text{ for all } x \in B(x_0, \delta),
$$

and the following qualification constraint condition is satisfied: there exists a point \bar{x} in $B(x_0, \delta)$ such that

$$
N_{\overline{\text{dom}g}}(G(\bar{x})) \cap \ker \nabla G(\bar{x})^* = \{0\}
$$

This constraint qualification implies (see [19, p. 445], for example) that

$$
\partial f(x) = \nabla G(x)^* \partial g(G(x)), \text{ for all } x \in B(x_0, \delta).
$$

Proposition 11 Let $f: U \to \mathbb{R}$ be a locally Lipschitz function and $0 < \alpha < 1$. Consider the following conditions:

(i) f is locally decomposable on U as a sum of a convex continuous and a $C^{1,\alpha}$ function; (ii) f is locally composite on U with a convex continuous and a $C^{1,\alpha}$ function; (iii) f is a $LC^{1,\alpha}$ function.

Then $(i) \Longrightarrow (ii) \Longrightarrow (iii)$.

Proof. (i) \Longrightarrow (ii). Having a local decomposition $f = k + h$, set $g(x,r) = k(x) + r$ for $(x, r) \in \mathbb{R}^n \times \mathbb{R}$ and $G(x) = (x, h(x))$ for $x \in \mathbb{R}$. It is straightforward to see that $f(x) = g(G(x))$, that G is $C^{1,a}$ and that g is convex and continuous. The qualification constraint is trivially satisfied at x_0 for example.

(ii) \implies (iii). Let $x_0 \in U$, $\delta > 0$ and $g, h : B(x_0, \delta) \to \mathbb{R}$, g being convex continuous and $G \in C^{1,\alpha}(B(x_0,\delta))$ such that $f(x) = g(G(x))$ for all $x \in B(x_0,\delta)$. For all x near x_0 , one has

$$
\partial f(x) = \nabla G(x)^* \partial g(G(x))
$$

Since ∇G is α -Hölderian, let $\sigma > 0$ such that for all $x, y \in B(x_0, \delta)$

$$
\left| |\nabla G(y) - \nabla G(x)| \right| \leq \sigma \left| |y - x| \right|^{\alpha}.
$$
\n(19)

Let $x, y \in B(x_0, \delta)$. For any $x^* \in \partial f(x)$, there exists $\zeta \in \partial g(G(x))$ such that $x^* =$ $\nabla G(x)^{*}\zeta$. Since g is convex, it follows that

$$
f(y) - f(x) = g(G(y)) - g(G(x)) \ge \langle \zeta, G(y) - G(x) \rangle.
$$
 (20)

Applying the mean value theorem to the function G on the segment $[x, y]$ we obtain $z \in [x, y]$ such that

$$
G(y) - G(x) = \nabla G(z)(y - x). \tag{21}
$$

By (19) , it holds

$$
||\nabla G(z) - \nabla G(x)|| \leq \sigma ||z - x||^{\alpha} \leq \sigma ||y - x||^{\alpha}.
$$
 (22)

Thus by (20) , (21) and (22) , we can write

$$
f(y) - f(x) \geq \langle \zeta, \nabla G(z)(y - x) \rangle
$$

= $\langle \zeta, \nabla G(x)(y - x) \rangle + \langle \zeta, (\nabla G(z) - \nabla G(x))(y - x) \rangle$
 $\geq \langle \zeta, \nabla G(x)(y - x) \rangle - \sigma ||\zeta|| ||y - x||^{1+\alpha}$

Moreover, there exists a constant $\kappa > 0$ which bounds uniformly the norm of every subgradient of the convex continuous function g near x_0 . Thus it holds

$$
f(y) - f(x) \geq \langle x^*, y - x \rangle - \sigma \kappa ||y - x||^{1+\alpha},
$$

and we can conclude by Theorem 7(iii) \Rightarrow (i) and Theorem 8.

Remark 12 (conjecture) A classical result of Rockafellar [18] (see also [23], [8]) asserts that every LC^2 function is decomposable as a sum of a convex continuous and a concave quadratic function. Moreover, in view of Remark 9, the classes $LC^{1,1}$ and LC^2 coincide. Thus, in case $\alpha = 1$, the three assertions of Proposition 11 are then equivalent. It is not known if an analogous equivalence holds for the classes of LC^1 and $LC^{1,\alpha}$ functions.

Let us now give an example of a LC^1 function f, which does not belong to any of the classes $LC^{1,\alpha}$ for $\alpha > 0$. More precisely, we have the following proposition.

Proposition 13

$$
\bigcup_{0<\alpha<1} LC^{1,\alpha} \varsubsetneq LC^1
$$

Proof. The inclusion follows directly from Definition 2. To see that the inclusion is strict, let us consider the function $f : \mathbb{R} \to \mathbb{R}$ defined as follows:

$$
f(x) = -\int_0^x g(t) dt,
$$

where

$$
g(t) = \begin{cases} 0 & t \leq 0\\ \frac{1}{|\ln t|} & t > 0 \end{cases}
$$

It is easily seen that g is continuous on \mathbb{R} , so that f is of class C^1 . In particular, $f \in LC^1$. Note also that $f(0) = 0$ and $f'(0) = 0$.

Let us prove that for any $\alpha > 0$ the function f does not belong to the class $LC^{1,\alpha}$. Indeed, suppose towards a contradiction that there exists $\alpha > 0$ such that $f \in LC^{1,\alpha}$. Then by Theorem 8 and Theorem 7 (i)⇒(iii) there exist $\sigma, \delta > 0$ such that for all $x \in (0,1)$,

$$
f(x) \geqslant -\sigma |x|^{1+\alpha}.
$$

Set now $\phi(x) = f(x) + \sigma |x|^{1+\alpha}$. Then the function ϕ is C^1 , non-negative and $\phi(0) = 0$. It follows easily that there exists a sequence $(x_n)_{n\geq 1}$ of positive real numbers converging to 0 such that $\phi'(x_n) \geq 0$. (Indeed, if for some $\delta > 0$ we have $\phi'(x) < 0$ for all $x \in (0, \delta)$, then ϕ should necessarily take negative values.) We compute $\phi'(x) = (1 + \alpha)\sigma x^{\alpha} - g(x)$ for $x > 0$. Then we have for all $n > 0$

$$
(1+\alpha)\sigma \geqslant \frac{1}{x_n^{\alpha}|\ln x_n|}.
$$

Since $\alpha > 0$ the right-hand side tends to $+\infty$ when n grows. We thus obtain a contradiction. It follows that $\overline{}$

$$
f \in C^1 \setminus \bigcup_{\alpha > 0} LC^{1,\alpha},
$$

which proves the assertion. \Box

Let us complete our classification with the following proposition.

Proposition 14

$$
LC^2 \varsubsetneq \bigcap_{0 < \alpha < 1} LC^{1,\alpha}
$$

Proof. Since every LC^2 function is a fortiori $LC^{1,\alpha}$ for all $0 < \alpha < 1$, the inclusion holds. To see that the inclusion is strict, let us consider the function

$$
f(x) = \int_0^x g(t) \, dt \,, \qquad \text{for all } x \in \mathbb{R},
$$

where

$$
g(t) = \begin{cases} 0 & t \leq 0\\ t \ln t & t > 0. \end{cases}
$$

Then g is continuous on R and clearly not Lipschitz around $t = 0$. Let us show that, for any $0 < \alpha < 1$, q is α -Hölderian in a neighborhood of 0. To this end, take x, y sufficiently small to ensure that are inside a neighborhood of 0 in which q is decreasing. We can suppose without loss of generality that $y < x$. We may suppose $x > 0$ (else the condition of α -Hölderianity is trivially fulfilled), and we distinguish three cases.

Case 1. $y \leq 0$. Then we can write

$$
\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} = \frac{x|\ln x|}{|x - y|^{\alpha}} \leq \frac{x|\ln x|}{x^{\alpha}} = x^{1 - \alpha}|\ln x|.
$$
 (23)

Case 2. $0 < y < x/2$. In this case $0 > g(y) > g(x)$ so that

$$
\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \leqslant \frac{|g(x)|}{|x/2|^{\alpha}} \leqslant 2^{\alpha} |\ln x| x^{1 - \alpha}.
$$
\n(24)

Case 3. $x/2 < y < x$. Applying the mean-value theorem for the function g to the segment $[x, y]$ (where g is C^{∞}) we obtain $z \in [x, y]$ such that

$$
\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \le (|\ln z| + 1)|x - y|^{1 - \alpha} \le (|\ln \frac{x}{2}| + 1) x^{1 - \alpha}.
$$
 (25)

In all cases (23)-(25), the quantity $|x-y|^{-\alpha} |g(x)-g(y)|$ is bounded when x and y are sufficiently close to 0. Thus, there exist $\delta > 0$ and $M > 0$ such that for all $x, y \in]-\delta, \delta[$ with $x \neq y$ we have

$$
\frac{|g(x) - g(y)|}{|x - y|^{\alpha}} \leq M.
$$

This means that g is α -Hölderian on $]-\delta, \delta[$.

It follows that f is C^1 on R and locally $C^{1,\alpha}$ around 0, for any $0 < \alpha < 1$. We us prove that f is not LC^2 around 0. To this end, let us assume, towards a contradiction, that there exists $\delta > 0$ such that ∂f is hypomonotone on $B(x_0, \delta)$. Since f is C^1 , we have $\partial f(x) = \{g(x)\}\$ for all $x \in \mathbb{R}$, and in particular $\partial f(0) = \{0\}$. Then for all $\sigma > 0$ and $x \in B(x_0, \delta),$

$$
x g(x) \geqslant -\sigma |x|^2.
$$

This implies

$$
\ln x \geqslant -\sigma \quad \text{for all } 0 < x < \delta,
$$

which is a clear contradiction. \Box

ſ

Let us resume the results in the following diagram.

$$
LC^{\infty} = \underset{(2 < k < +\infty)}{LC^k} = LC^2 = LC^{1,1} \subsetneq \underset{(0 < \alpha < 1)}{LC^{1,\alpha}} \subsetneq LC^1
$$
\n
$$
\bigcup_{0 < \alpha < 1} LC^{1,\alpha} \subsetneq LC^{1}
$$
\n
$$
LC^2 \subsetneq \bigcap_{0 < \alpha < 1} LC^{1,\alpha}
$$

Acknowledgment: The first author is indebted to L. Thibault for useful discussions.

—————————————————-

References

- [1] AUSSEL, D., DANIILIDIS, A. & THIBAULT, L., Subsmooth sets: functional characterizations and related concepts, Trans. Amer. Math. Soc. (to appear).
- [2] BERNARD, F. & THIBAULT, L., Uniform Prox-regularity of functions and epigraphs in Hilbert spaces, preprint 25p, Montpellier, 2002.
- [3] Clarke, F.H., Optimization and Nonsmooth Analysis (Wiley Interscience, New York 1983).
- [4] Clarke, F.H., Stern, R. & Wolenski, P., Proximal Smoothness and the Lower- C^2 Property, *J. Convex Anal.* 2 (1995), 117-144.
- [5] DANIILIDIS, A. & GEORGIEV, P., Approximate convexity and submonotonicity, J. Math. Anal. Appl. 291 (2004), 292–301.
- [6] Georgiev, P., Submonotone Mappings in Banach Spaces and Applications, Set-Valued Analysis 5 (1997), 1-35.
- [7] GREEN, J.-W., Approximately convex functions, *Duke Math. J.* **19** (1952), 499-504.
- [8] HIRIART-URRUTY, J.-B., "Generalized differentiability, duality and optimization for problems dealing with differences of convex functions", in: Convexity and Duality in Optimization", Lecture Notes in Econom. Math. Systems 256 (1984), 37-70.

- [9] HYERS, D.-H. & ULAM, S.-M., Approximately convex functions, *Proc. Amer.* Math. Soc. **3** (1952), 821-828.
- [10] JANIN, R., Sur des multiapplications qui sont des gradients généralisés, C.R. Acad. Sc. Paris 294 (1982), 117-119.
- [11] JOURANI, A., Subdifferentiability and subdifferential monotonicity of γ -paraconvex functions, Control Cybernet. 25 (1996), 721–737.
- [12] LEBOURG, G., Generic differentiability of Lipschitzian functions, Trans. Amer. Math. Soc. **256** (1979), 125-144.
- [13] MALIVERT, C., PENOT, J.-P. & THERA, M., Minimisation d'une fonction régulière sur un fermé non-régulier et non-convexe d'un espace de Hilbert, C. R. Acad. Sc. Paris 286 (Série A) (1978), 1191-1193.
- [14] NGAI, H.V., LUC, D.T. & THERA, M., "On ε -convexity and ε -monotonicity", in: Calculus of Variations and Differential Equations, A. Ioffe, S. Reich, and I. Shafrir (Eds), Research Notes in Mathematical Series (Chapman & Hall, 82-100, 1999).
- [15] NGAI, H.V., LUC, D.T. & THERA, M., Approximate convex functions, *Journal of* Nonlinear and Convex Analysis 1 (2000), 155-176.
- [16] Pales, Z., On approximately convex functions, Proc. Amer. Math. Soc. 131 (2003), 243-252.
- [17] Penot, J.-P., Favorable Classes of Mappings and Multimappings in Nonlinear Analysis and Optimization, J. Convex Anal. 3 (1996) 97-116.
- [18] Rockafellar, R.T., "Favorable Classes of Lipschitz Continuous Functions in Subgradient Optimization" in: Non-differentiable Optimization (1982), Nurminski E. (eds), Pergamon Press, New York.
- [19] ROCKAFELLAR, R.T. & WETS, R., Variational Analysis, Grundlehren der Mathematischen, Wissenschaften, Vol. 317, (Springer, 1998).
- [20] ROLEWICZ, S., On the coincidence of some subdifferentials in the class of $\alpha(\cdot)$ paraconvex functions, Optimization 50 (2001), 353-363.
- [21] POLIQUIN, R. & ROCKAFELLAR, T., Prox-regular functions in variational analysis, Trans. Amer. Math. Soc. 348 (1996), 1805-1838.
- [22] Spingarn, J.E., Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math. Soc. **264** (1981), 77-89.
- [23] Vial, J.-P., Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), 231-259.

Aris DANIILIDIS Departament de Matem`atiques Universitat Autònoma de Barcelona E-08193 Bellaterra (Cerdanyola del Vallès), Spain.

e-mail: arisd@mat.uab.es http://mat.uab.es/~arisd

——————————————

Jérôme MALICK INRIA, Rhone-Alpes 655 avenue de l'Europe Montbonnot, St Martin F-38334 Saint Ismier, France email: jerome.malick@inria.fr

http://www.inrialpes.fr/bipop/people/malick/