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Abstract. In this work we prove that every locally symmetric smooth submanifold M of Rn gives
rise to a naturally defined smooth submanifold of the space of n × n symmetric matrices, called
spectral manifold, consisting of all matrices whose ordered vector of eigenvalues belongs to M. We
also present an explicit formula for the dimension of the spectral manifold in terms of the dimension
and the intrinsic properties of M.
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1 Introduction

Denoting by Sn the Euclidean space of n× n symmetric matrices with inner product 〈X,Y 〉 =
tr (XY ), we consider the spectral mapping λ, that is, a function from the space Sn to Rn, which
associates to X ∈ Sn the vector λ(X) of its eigenvalues. More precisely, for a matrix X ∈ Sn, the
vector λ(X) = (λ1(X), . . . , λn(X)) consists of the eigenvalues of X counted with multiplicities and
ordered in a non-increasing way:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

The object of study in this paper are spectral sets, that is, subsets of Sn stable under orthogonal
similarity transformations: a subset M ⊂ Sn is a spectral set if for all X ∈ M and U ∈ On we
have U>XU ∈ M, where On is the set of n×n orthogonal matrices. In other words, if a matrix X
lies in a spectral set M ⊂ Sn, then so does its orbit under the natural action of the group of On

On.X = {U>XU : U ∈ On}.

The spectral sets are entirely defined by their eigenvalues, and can be equivalently defined as
inverse images of subsets of Rn by the spectral mapping λ, that is,

λ−1(M) := {X ∈ Sn : λ(X) ∈M}, for some M ⊂ Rn.

For example, if M is the Euclidean unit ball B(0, 1) of Rn, then λ−1(M) is the Euclidean unit ball
of Sn as well. A spectral set can be written as union of orbits:

λ−1(M) =
⋃

x∈M

On.Diag(x), (1.1)

where Diag(x) denotes the diagonal matrix with the vector x ∈ Rn on the main diagonal.
In this context, a general question arises: What properties on M remain true on the corres-

ponding spectral set λ−1(M)?
In the sequel we often refer to this as the transfer principle. The spectral mapping λ has nice

geometrical properties, but it may behave very badly as far as, for example, differentiability is
concerned. This imposes intrinsic difficulties for the formulation of a generic transfer principle.
Invariance properties of M under permutations often correct such bad behavior and allow us to
deduce transfer properties between the sets M and λ−1(M). A set M ⊂ Rn is symmetric if
σM = M for all permutations σ on n elements, where the permutation σ permutes the coordinates
of vectors in Rn in the natural way. Thus, if the set M ⊂ Rn is symmetric, then properties
such as closedness and convexity are transferred between M and λ−1(M). Namely, M is closed
(respectively, convex [9], prox-regular [3]) if and only if λ−1(M) is closed (respectively, convex,
prox-regular). The next result is another interesting example of such a transfer.

Proposition 1.1 (Transferring algebraicity). Let M⊂ Rn be a symmetric algebraic variety. Then,
λ−1(M) is an algebraic variety of Sn.

Proof. Let p be any polynomial equation of M, that is p(x) = 0 if and only if x ∈M. Define the
symmetric polynomial q(x) :=

∑
σ p

2(σx). Notice that q is again a polynomial equation of M and
q(λ(X)) is an equation of λ−1(M). We just have to prove that q ◦ λ is a polynomial in the entries
of X. It is known that q can be written as a polynomial of the elementary symmetric polynomials
p1, p2, . . . , pn. Each pj(λ(X)), up to a sign, is a coefficient of the characteristic polynomial of X,
thus it is a polynomial in X. Thus we can complete the proof.
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Concurrently, similar transfer properties hold for spectral functions, that is, functions F : Sn →
Rn which are constant on the orbits On.X or equivalently, functions F that can be written as
F = f ◦ λ with f : Rn → R being symmetric, that is invariant under any permutation of entries
of x. Since f is symmetric, closedness and convexity are transferred between f and F (see [9] for
details). More surprisingly, some differentiability properties are also transferred (see [8], [10] and
[13]). As established recently in [3], the same happens for an important property of variational
analysis, the so-called prox-regularity (we refer to [12] for the definition).

In this work, we study the transfer of differentiable structure of a submanifold M of Rn to the
corresponding spectral set. This gives rise to an orbit-closed set λ−1(M) of Sn, which, in case it
is a manifold, will be called spectral manifold. Such spectral manifolds often appear in engineering
sciences, often as constraints in feasibility problems (for example, in the design of tight frames [14]
in image processing or in the design of low-rank controller [11] in control). Given a manifold M,
the answer, however, to the question of whether or not the spectral set λ−1(M) is a manifold of
Sn is not direct: indeed, a careful glance at (1.1) reveals that On.Diag(x) has a natural (quotient)
manifold structure (we detail this in Section 3.1), but the question is how the different strata
combine as x moves along M.

For functions, transferring local properties as differentiability requires some symmetry, albeit
not with respect to all permutations: it turns out that many properties still hold under local
symmetry, that is, invariance under permutations that preserve balls centered at the point of
interest. We define precisely these permutations in Section 2.1, and we state in Theorem 3.2 that
the differentiability of spectral functions is valid under this local invariance.

The main goal here is to prove that local smoothness of M is transferred to the spectral set
λ−1(M), whenever M is locally symmetric. More precisely, our aim here is

• to prove that every connected Ck locally symmetric manifold M of Rn is lifted to a connected
Ck manifold λ−1(M) of Sn, for k ∈ {2,∞, ω};

• to derive a formula for the dimension of λ−1(M) in terms of the dimension of M and some
characteristic properties of M.

This is eventually accomplished with Theorem 4.21. To get this result, we use extensively
differential properties of spectral functions and geometric properties of locally symmetric manifolds.
Roughly speaking, given a manifoldM which is locally symmetric around x̄, the idea of the proof is:

1. to exhibit a simple locally symmetric affine manifold D, see (4.12), which will be used as a
domain for a locally symmetric local equation for the manifold M around x̄ (Theorem 4.12);

2. to show that λ−1(D) is a smooth manifold (Theorem 4.16) and use it as a domain for a
local equation of λ−1(M) (see definition in (4.16)), in order to establish that the latter is a
manifold (Theorem 4.21).

The paper is organized as follows. We start with grinding our tools: in Section 2 we recall basic
properties of permutations and define a stratification of Rn naturally associated to them which
will be used to study properties of locally symmetric manifolds in Section 3. Then, in Section 4
we establish the transfer of the differentiable structure from locally symmetric subsets of Rn to
spectral sets of Sn.
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2 Preliminaries on permutations

This section gathers several basic results about permutations that are used extensively later.
In particular, after defining order relations on the group of permutations in Subsection 2.1 and the
associated stratification of Rn in Subsection 2.2, we introduce the subgroup of permutations that
preserve balls centered at a given point.

2.1 Permutations and partitions

Denote by Σn the group of permutations over Nn := {1, . . . , n}. This group has a natural action
on Rn defined for x = (x1, . . . , xn) by

σx := (xσ−1(1), . . . , xσ−1(n)). (2.1)

Given a permutation σ ∈ Σn, we define its support supp(σ) ⊂ Nn as the set of indices i ∈ Nn

that do not remain fixed under σ. Further, we denote by Rn
≥ the closed convex cone of all vectors

x ∈ Rn with x1 ≥ x2 ≥ · · · ≥ xn.
Before we proceed, let us recall some basic facts on permutations. A cycle of length k ∈ Nn

is a permutation σ ∈ Σn such that for k distinct elements i1, . . . , ik in Nn we have supp(σ) =
{i1, . . . , ik}, and σ(ij) = ij+1 (mod k); we represent σ by (i1, . . . , ik). Every permutation has a cyclic
decomposition: that is, every permutation σ ∈ Σn can be represented (in a unique way up to
reordering) as a composition of disjoint cycles

σ = σ1 ◦ · · · ◦ σm, where the σi’s are cycles.

It is easy to see that if the cycle decomposition of σ ∈ Σn is

(a1, a2, . . . , ak1)(b1, b2, . . . , bk2) · · ·

then for any τ ∈ Σn the cycle decomposition of τστ−1 is

(τ(a1), τ(a2), . . . , τ(ak1))(τ(b1), τ(b2), . . . , τ(bk2)) · · · (2.2)

Thus, the support supp(σ) of the permutation σ is the (disjoint) union of the supports Ii =
supp(σi) of the cycles σi of length at least two (the non-trivial cycles) in its cycle decomposition.
The partition

{I1, . . . , Im,Nn \ supp(σ)}

of Nn is thus naturally associated to the permutation σ. Splitting further the set Nn \ supp(σ) into
the singleton sets {j} we obtain a refined partition of Nn

P (σ) := {I1, . . . , Iκ+m}, (2.3)

where κ is the cardinality of the complement of the support of σ in Nn, and m is the number of
non-trivial cycles in the cyclic decomposition of σ. For example, for σ = (123)(4)(5) ∈ Σ5 we have
κ = 2, m = 1 and the partition of {{1, 2, 3}, {4}, {5}} of N5. Thus, we obtain a correspondence
from the set of permutations Σn onto the set of partitions of Nn.

Definition 2.1. An order on the partitions: Given two partitions P and P ′ of Nn we say that
P ′ is a refinement of P , written P ⊆ P ′, if every set in P is a (disjoint) union of sets from P ′.
If P ′ is a refinement of P but P is not a refinement of P ′ then we say that the refinement is
strict and we write P ⊂ P ′. Observe this partial order is a lattice.
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An order on the permutations: The permutation σ′ is said to be larger than or equivalent to
σ, written σ - σ′, if P (σ) ⊆ P (σ′). The permutation σ′ is said to be strictly larger than σ,
written σ ≺ σ′, if P (σ) ⊂ P (σ′).

Equivalence in Σn: The permutations σ, σ′ ∈ Σn are said to be equivalent, written σ ∼ σ′, if
they define the same partitions, that is if P (σ) = P (σ′).

Block-Size type of a permutation: Two permutations σ, σ′ in Σn are said to be of the same
block-size type, whenever the set of cardinalities, counting repetitions, of the sets in the
partitions P (σ) and P (σ′), see (2.3), are in a one-to-one correspondence. Notice that if σ and
σ′ are of the same block-size type, then they are either equivalent or non-comparable.

We give illustrations (by means of simple examples) of the above notions, which are going to
be used extensively in the paper.

Example 2.2 (Permutations vs Partitions). The following simple examples illustrate the notions
defined in Definition 2.1.

(i) The set of permutations of Σ3 that are larger than or equivalent to σ := (1, 2, 3) is

{(1, 2, 3), (1, 3, 2), (1, 2), (1, 3), (2, 3), id3}.

(ii) The following three permutations of Σ4 have the same block-size type:

σ = (123)(4), σ′ = (132)(4), σ′′ = (124)(3) .

Note that the first two permutations are equivalent and not comparable to the third one.

(iii) The minimal elements of Σn under the partial order relation - are exactly the n-cycles,
corresponding to the partition {Nn}.

(iv) The (unique) maximum element of Σn under - is the identity permutation idn, corresponding
to the discrete partition {{i} : i ∈ Nn}.

Consider two permutations σ, σ′ ∈ Σn such that σ′ - σ; according to the above, each cycle
of σ′ is either a permutation of the elements of a cycle in σ (giving rise to the same set in the
corresponding partitions P (σ) and P (σ′)) or it is formed by merging (and permuting) elements
from several cycles of σ. If no cycle of σ′ is of the latter type, then σ and σ′ define the same
partition (thus they are equivalent), while on the contrary, σ′ ≺ σ. Later, in Subsection 3.3, we
will introduce a subtle refinement of the order relation ≺, which will be of crucial importance in
our development.

We also introduce another partition of Nn depending on the point x ∈ Rn denoted P (x) and
defined by the indexes of the equal coordinates of x. More precisely, for i, j ∈ Nn we have:

i, j are in the same subset of P (x) ⇐⇒ xi = xj . (2.4)

This partition will appear frequently in the sequel, when we study subsets of Rn that are symmetric
around x. For x̄ ∈ Rn and σ̄ ∈ Σn, we define two invariant sets

Fix (σ̄) := {x ∈ Rn : σ̄x = x} and Fix (x̄) := {σ ∈ Σn : σx̄ = x̄}.

Then, in view of (2.4) we have

σ̄ ∈ Fix (x̄) ⇐⇒ x̄ ∈ Fix (σ̄) ⇐⇒ P (x̄) ⊆ P (σ̄). (2.5)
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2.2 Stratification induced by the permutation group

In this section, we introduce a stratification of Rn associated with the set of permutations Σn.
In view of (2.5), associated to a permutation σ is the subset ∆(σ) of Rn defined by

∆(σ) := {x ∈ Rn : P (σ) = P (x)}. (2.6)

For σ ∈ Σn and P (σ) = {I1, . . . , Im}, we have the representation

∆(σ) = {x ∈ Rn : xi = xj ⇐⇒ ∃ k ∈ Nm with i, j ∈ Ik}.

Obviously ∆(σ) is an affine manifold, not connected in general. Note also that its orthogonal and
bi-orthogonal spaces have the following expressions, respectively,

∆(σ)⊥ =
{
x ∈ Rn :

∑
j∈Ii

xj = 0, for i ∈ Nm

}
, (2.7)

∆(σ)⊥⊥ = {x ∈ Rn : xi = xj for any i, j ∈ Ik, k ∈ Nm}. (2.8)

Note that ∆(σ)⊥⊥ = ∆(σ), where the latter set is the closure of ∆(σ). Thus, ∆(σ)⊥ is a vector space
of dimension n−m while ∆(σ)⊥⊥ is a vector space of dimension m. For example, ∆(idn)⊥ = {0}
and ∆(idn)⊥⊥ = Rn. We show now, among other things, that {∆(σ) : σ ∈ Σn} is a stratification of
Rn, that is, a collection of disjoint smooth submanifolds of Rn with union Rn that fit together in
a regular way. In this case, the submanifolds in the stratification are affine.

∆((123))
∆((13))

x3

x1

x2

∆((12))

∆(id)

Figure 1: The affine stratification of R3

Proposition 2.3 (Properties of ∆(σ)). (i) Let x ∈ Rn and let P be any partition of Nn. Then,
P (x) ⊆ P if and only if there is a sequence xn → x in Rn satisfying P (xn) = P for all n ∈ N.

(ii) Let σ, σ′ ∈ Σn. Then,
σ - σ′ ⇐⇒ ∆(σ) ⊂ ∆(σ′)⊥⊥, (2.9)

σ ∼ σ′ ⇐⇒ ∆(σ) ∩∆(σ′) 6= ∅ ⇐⇒ ∆(σ) = ∆(σ′). (2.10)

(iii) For any σ ∈ Σn we have
∆(σ)⊥⊥ =

⋃
σ′-σ

∆(σ′). (2.11)
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(iv) Given σ, σ′ ∈ Σn let σ ∧ σ′ be any infimum of σ and σ′ (notice this is unique modulo ∼).
Then

∆(σ)⊥⊥ ∩∆(σ′)⊥⊥ = ∆(σ ∧ σ′)⊥⊥. (2.12)

(v) For any τ, σ ∈ Σn we have
τ∆(σ) = ∆(τστ−1).

Proof. Assertion (i) is straightforward. Assertion (ii) follows from (i), (2.5), (2.6) and (2.8).
Assertion (iii) is a direct consequence of (i), (ii) and (2.8).

To show assertion (iv), let first x ∈ ∆(σ)⊥⊥∩∆(σ′)⊥⊥. Then, in view of (iii), there exist τ1 - σ
and τ2 - σ′ such that x ∈ ∆(τ1)∩∆(τ2). Thus, by (2.10), τ1 ∼ τ2 and by (2.9) they are both smaller
than or equivalent to σ∧σ′. Thus, x ∈ ∆(σ∧σ′)⊥⊥ showing that ∆(σ)⊥⊥∩∆(σ′)⊥⊥ ⊂ ∆(σ∧σ′)⊥⊥.
Let now x ∈ ∆(σ ∧ σ′)⊥⊥. Then, for some τ - σ ∧ σ′ we have x ∈ ∆(τ). Since τ - σ and τ - σ′

the inverse inclusion follows from (iii).
We finally prove (v). We have that x ∈ τ∆(σ) if and only if τ−1x ∈ ∆(σ). This latter happens

if and only if for all i, j ∈ Nn one has (τ−1x)i = (τ−1x)j precisely when i, j belong to the same
cycle of σ. By (2.1), this is equivalent to xτ(i) = xτ(j) precisely when i, j are in the same cycle of σ
for all i, j ∈ Nn. In view of (2.2), i, j are in the same cycle of σ if and only if τ(i), τ(j) are in the
same cycle of τστ−1. This completes the proof.

Corollary 2.4 (Stratification). The collection {∆(σ) : σ ∈ Σn} is an affine stratification of Rn.

Proof. Clearly, each ∆(σ) is an affine submanifold of Rn. By (2.10), for any σ, σ′ ∈ Σn, the sets
∆(σ) and ∆(σ′) are either disjoint or they coincide. Thus, the elements in the set {∆(σ) : σ ∈ Σn}
are disjoint. By construction, the union of all ∆(σ)’s equals Rn. The frontier condition of the
stratification follows from (2.8) and (2.11).

We introduce an important set for our next development. Consider the set of permutations
that are larger than, or equivalent to a given permutation σ ∈ Σn

S%(σ) := {σ′ ∈ Σn : σ′ % σ}.

Notice that S%(σ) is a subgroup of Σn, and that

|S%(σ)| = (|I1|)! · · · (|Im|)!, (2.13)

if P (σ) = {I1, . . . , Im}. Observe then that σ ∼ σ′ if and only if S%(σ) = S%(σ′). So we also
introduce the corresponding set for a point x ∈ Rn

S%(x) := S%(σ) for any σ such that x ∈ ∆(σ) , (2.14)

which is nothing else than the set Fix (x). The forthcoming result shows that the above permuta-
tions are the only ones preserving balls centered at x̄.

Lemma 2.5 (Local invariance and ball preservation). For any x̄ ∈ Rn, we have the dichotomy:

(i) σ ∈ S%(x̄) ⇐⇒ ∀δ > 0 : σB(x̄, δ) = B(x̄, δ);

(ii) σ 6∈ S%(x̄) ⇐⇒ ∃δ > 0 : σB(x̄, δ) ∩B(x̄, δ) = ∅.

Proof. Observe that σ ∈ S%(x̄) if and only if P (x̄) ⊆ P (σ) if and only if ‖x̄ − σx̄‖ = 0. So
implication ⇐ of (i) follows by taking δ → 0. The implication ⇒ of (i) comes from the symmetry
of the norm which yields for any x ∈ Rn

‖x− x̄‖ = ‖σx− σx̄‖ = ‖σx− x̄‖.
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To prove (ii), we can just consider δ = ‖x̄ − σx̄‖/3 and note that δ > 0 whenever σ /∈ S%(x̄).
Utilizing

‖x̄− σx‖ ≥ |‖x̄− σx̄‖ − ‖σx̄− σx‖| = ‖x̄− σx̄‖ − ‖x̄− x‖ ≥ 2δ

concludes the proof.

In words, if the partition associated to σ refines the partition of x̄, then σ preserves all the
balls centered at x̄; and this property characterizes those permutations. The next corollary goes a
bit further by saying that the preservation of only one ball, with a sufficiently small radius, also
characterizes S%(x̄).

Corollary 2.6 (Invariance of one ball). For every x̄ ∈ Rn there exists r > 0 such that:

σ ∈ S%(x̄) ⇐⇒ σB(x̄, r) = B(x̄, r) and σ 6∈ S%(x̄) ⇐⇒ σB(x̄, r) ∩B(x̄, r) = ∅.

Proof. For any σ /∈ S%(x̄), Lemma 2.5(ii) gives a radius, that we denote here by δσ > 0, such
that σB(x̄, δσ)∩B(x̄, δσ) = ∅. Note also that for all δ ≤ δσ, there still holds σB(x̄, δ)∩B(x̄, δ) = ∅.
Set now

r = min
{
δσ : σ /∈ S%(x̄)

}
> 0.

Thus σB(x̄, r)∩B(x̄, r) = ∅ for all σ /∈ S%(x̄). This yields that if a permutation preserves the ball
B(x̄, r), then it lies in S%(x̄). The converse comes from Lemma 2.5.

We finish this section by expressing the orthogonal projection of a point onto a given stratum
using permutations. Letting P (σ) = {I1, . . . , Im}, it is easy to see that

y = Proj ∆(σ)⊥⊥(x) ⇐⇒ y` =
1
|Ii|

∑
j∈Ii

xj for all ` ∈ Ii with i ∈ Nm. (2.15)

Note also that if the numbers
1
|Ii|

∑
j∈Ii

xj for i ∈ Nm

are distinct, then this equality also provides the projection of x onto the (non-closed) set ∆(σ). We
can state the following result.

Lemma 2.7 (Projection onto ∆(σ)⊥⊥). For any σ ∈ Σn and x ∈ Rn we have

Proj ∆(σ)⊥⊥(x) =
1

|S%(σ)|

∑
σ′%σ

σ′x. (2.16)

Proof. For every j, `∈Ii, the coordinate xj is repeated |S%(σ)|/|Ii| times in the sum
(∑

σ′%σ σ
′x
)
`
.

Thus, (2.15) together with (2.13) yields the result.

3 Locally symmetric manifolds

In this section we introduce and study the notion of locally symmetric manifolds; we will then
prove in Section 4 that these submanifolds of Rn are lifted up, via the mapping λ−1, to spectral
submanifolds of Sn.
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After defining the notion of a locally symmetric manifold in Subsection 3.1, we illustrate some
intrinsic difficulties that prevent a direct proof of the aforementioned result. In Subsection 3.2 we
study properties of the tangent and the normal space of such manifolds. In Subsection 3.3, we
specify the location of the manifold with respect to the stratification, which leads in Subsection 3.4
to the definition of a characteristic permutation naturally associated with a locally symmetric
manifold. We explain in Subsection 3.5 that this induces a canonical decomposition of Rn yielding
a reduction of the active normal space in Subsection 3.6. Finally, in Subsection 3.7 we obtain a
very useful description of such manifolds by means of a reduced locally symmetric local equation.
This last step will be crucial for the proof of our main result in Section 4.

3.1 Locally symmetric functions and manifolds

Let us start by refining the notion of symmetric function employed in previous works (see [10],
[3] for example).

Definition 3.1 (Locally symmetric function). A function f : Rn → R is called locally symmetric
around a point x̄ ∈ Rn if for any x close to x̄

f(σx) = f(x) for all σ ∈ S%(x̄) .

Naturally, a vector-valued function g : Rn → Rp is called locally symmetric around x̄ if each
component function gi : Rn → R is locally symmetric (i = 1, . . . , p).

In view of Lemma 2.5 and its corollary, locally symmetric functions are those which are sym-
metric on an open ball centered at x̄, under all permutations of entries of x that preserve this ball.
It turns out that the above property is the invariance property needed on f for transferring its
differentiability properties to the spectral function f ◦ λ, as stating in the next theorem. Recall
that for any vector x in Rn, Diagx denotes the diagonal matrix with the vector x on the main
diagonal, and diag : Sn → Rn denotes its adjoint operator, defined by diag (X) := (x11, . . . , xnn)
for any matrix X = (xij)ij ∈ Sn.

Theorem 3.2 (Derivatives of spectral functions). Consider a function f : Rn → R and define the
function F : Sn → R by

F (X) = (f ◦ λ)(X)

in a neighborhood of X̄. If f is locally symmetric at x̄, then

(i) the function F is C1 at X̄ if and only if f is C1 at λ(X̄);

(ii) the function F is C2 at X̄ if and only if f is C2 at λ(X̄);

(iii) the function F is C∞ (resp. Cω) at X̄ if and only if f is C∞ (resp. Cω) at λ(X̄), where Cω

stands for the class of real analytic functions.

In all above cases we have

∇F (X̄) = Ū>(Diag∇f(λ(X̄)))Ū

where Ū is any orthogonal matrix such that X = Ū>(Diag λ(X̄))Ū . Equivalently, for any direction
H ∈ Sn we have

∇F (X̄)[H] = ∇f(λ(X̄)))[diag (ŪHŪ>)]. (3.1)

Proof. The proof of the results is virtually identical with the proofs in the case when f is a
symmetric function with respect to all permutations. For a proof of (i) and the expression of the
gradient, see [8]. For (ii), see [10] (or [13, Section 7]), and for (iii) [2] and [15].
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The differentiability of spectral functions will be used intensively when defining local equations
of spectral manifolds. Before giving the definition of spectral manifolds and locally symmetric
manifolds, let us first recall the definition of submanifolds.

Definition 3.3 (Submanifold of Rn). A nonempty setM⊂ Rn is a Ck submanifold of dimension d
(with d ∈ {0, . . . , n} and k ∈ N ∪ {ω}) if for every x̄ ∈ M, there is a neighborhood U ⊂ Rn of
x̄ and Ck function ϕ : U → Rn−d with Jacobian matrix Jϕ(x̄) of full rank, and such that for all
x ∈ U we have x ∈M⇔ ϕ(x) = 0. The map ϕ is called local equation of M around x̄.

Remark 3.4 (Open subset). Every (nonempty) open subset of Rn is trivially a Ck-submanifold
of Rn (for any k) of dimension d = n.

Definition 3.5 (Locally symmetric sets). Let S be a subset of Rn such that

S ∩ Rn
≥ 6= ∅ . (3.2)

The set S is called strongly locally symmetric if

σS = S for all x̄ ∈ S and all σ ∈ S%(x̄).

The set S is called locally symmetric if for every x ∈ S there is a δ > 0 such that S ∩ B(x, δ) is
strongly locally symmetric set. In other words, for every x ∈ S there is a δ > 0 such that

σ(S ∩B(x, δ)) = S ∩B(x, δ) for all x̄ ∈ S ∩B(x, δ) and all σ ∈ S%(x̄).

In this case, observe that S ∩ B(x, ρ) for ρ ≤ δ is a strongly locally symmetric set as well (as an
easy consequence of Lemma 2.5).

Example 3.6 (Trivial examples). Obviously the whole space Rn is (strongly locally) symmetric.
It is also easily seen from the definition that any stratum ∆(σ) is a strongly locally symmetric
affine manifold. If x̄ ∈ ∆(σ) and the ball B(x̄, δ) is small enough so that it intersects only strata
∆(σ′) with σ′ % σ, then B(x̄, δ) is strongly locally symmetric.

Definition 3.7 (Locally symmetric manifold). A subset M of Rn is said to be a (strongly) locally
symmetric manifold if it is both a connected submanifold of Rn without boundary and a (strongly)
locally symmetric set.

Our objective is to show that locally symmetric smooth submanifolds of Rn are lifted to (spec-
tral) smooth submanifolds of Sn. Since the entries of the eigenvalue vector λ(X) are non-increasing
(by definition of λ), in the above definition we only consider the case where M intersects Rn

≥.
Anyhow, this technical assumption is not restrictive since we can always reorder the orthogonal
basis of Rn to get this property fulfilled. Thus, our aim is to show that λ−1(M∩Rn

≥) is a manifold,
which will be eventually accomplished by Theorem 4.21 in Section 4.

Before we proceed, we sketch two simple approaches that could be adopted, as a first try, in
order to prove this result, and we illustrate the difficulties that appear.

The first example starts with the expression (1.1) of the manifold λ−1(M). Introduce the
stabilizer of a matrix X ∈ Sn under the action of the orthogonal group On

On
X := {U ∈ On : U>XU = X}.

Observe that for x ∈ Rn
≥, we have an exact description of the stabilizer On

Diag(x) of the matrix
Diag(x). Indeed, considering the partition P (x) = {I1, . . . , Iκ+m} we have that U ∈ On

Diag(x) is a

block-diagonal matrix, made of matrices Ui ∈ O|Ii|. Conversely, every such block-diagonal matrix
belongs clearly to On

Diag(x). In other words, we have the identification

On
Diag(x) ' O|I1| × · · · ×O|Iκ+m|.
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Since Op is a manifold of dimension p(p− 1)/2, we deduce that On
Diag(x) is a manifold of dimension

dimOn
Diag(x) =

κ+m∑
i=1

|Ii|(|Ii| − 1)
2

.

It is a standard result that the orbit On.Diag(x) is diffeomorphic to the quotient manifold On/On
Diag(x).

Thus, On.Diag(x) is a submanifold of Sn of dimension

dimOn.Diag(x) = dimOn − dimOn
Diag(x)

=
n(n− 1)

2
−

κ+m∑
i=1

|Ii|(|Ii| − 1)
2

=
n2 −

∑κ+m
i=1 |Ii|2

2
=

∑
1≤i<j≤κ+m

|Ii||Ij |,

where we used twice the fact that n =
∑κ+m

i=1 |Ii|. What we need to show is that the (disjoint)
union of these manifolds

λ−1(M) =
⋃

x∈M
On.Diag(x)

is a manifold as well. We are not aware of a straightforward answer to this question. Our answer,
developed in Section 4, uses crucial properties of locally symmetric manifolds derived in this section.
We also exhibit explicit local equations of the spectral manifold λ−1(M).

Let us finish this overview by explaining how a second straightforward approach involving
local equations of manifolds would fail. To this end, assume that the manifold M of dimension
d ∈ {0, 1, . . . , n} is described by a smooth equation ϕ : Rn → Rn−d around the point x̄ ∈M∩Rn

≥.
This gives a function ϕ ◦ λ whose zeros characterize λ−1(M) around X̄ ∈ λ−1(M), that is, for all
X ∈ Sn around X̄

X ∈ λ−1(M) ⇐⇒ λ(X) ∈M ⇐⇒ ϕ(λ(X)) = 0. (3.3)

However we cannot guarantee that the function Φ := ϕ ◦ λ is a smooth function unless ϕ is locally
symmetric (since in this case Theorem 3.2 applies). But in general, local equations ϕ : Rn → R of
a locally symmetric submanifold of Rn might fail to be locally symmetric, as shown by the next
easy example.

Example 3.8 (A symmetric manifold without symmetric equations). Let us consider the following
symmetric (affine) submanifold of R2 of dimension one:

M = {(x, y) ∈ R2 : x = y} = ∆((12)).

The associated spectral set

λ−1(M) = {A ∈ Sn : λ1(A) = λ2(A)} = {αIn : α ∈ R}

is a submanifold of Sn around In = λ−1(1, 1). It is interesting to observe that though λ−1(M) is a
(spectral) 1-dimensional submanifold of Sn, this submanifold cannot be described by local equation
that is a composition of λ with ϕ : R2 → R a symmetric local equation of M around (1, 1). Indeed,
let us assume on the contrary that such a local equation of M exists, that is, there exists a smooth
symmetric function ϕ : R2 → R with surjective derivative ∇ϕ(1, 1) which satisfies

ϕ(x, y) = 0 ⇐⇒ x = y .
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Consider now the two smooth paths c1 : t 7→ (t, t) and c2 : t 7→ (t, 2− t). Since ϕ◦ c1(t) = 0 we infer

∇ϕ(1, 1)(1, 1) = 0. (3.4)

On the other hand, since c′2(1) = (1,−1) is normal to M at (1, 1), and since ϕ is symmetric, we
deduce that the smooth function t 7→ (ϕ ◦ c2)(t) has a local extremum at t = 1. Thus,

0 = (ϕ ◦ c2)′(1) = ∇ϕ(1, 1)(1,−1). (3.5)

Therefore, (3.4) and (3.5) imply that ∇ϕ(1, 1) = (0, 0) which is a contradiction. This proves that
there is no symmetric local equation ϕ : R2 → R of the symmetric manifold M around (1, 1).

We close this section by observing that the property of local symmetry introduced in Defini-
tion 3.5 is necessary and in a sense minimal. In any case, it cannot easily be relaxed as reveals the
following examples.

Example 3.9 (A manifold without symmetry). Let us consider the set

N = {(t, 0) : t ∈ (−1, 1)} ⊂ R2.

We have an explicit expression of λ−1(N )

λ−1(N ) =
{[

t cos2 θ t(sin 2θ)/2
t(sin 2θ)/2 t sin2 θ

]
,

[
−t sin2 θ t(sin 2θ)/2
t(sin 2θ)/2 −t cos2 θ

]
, t ≥ 0

}
.
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Figure 2: A spectral set of S2 represented in R3

It can be proved that this lifted set is not a submanifold of S2 since it has a sharp point at the
zero matrix, as suggested by its picture in R3 ' S2 (see Figure 2).
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Example 3.10 (A manifold without enough symmetry). Let us consider the set

N = {(t, 0,−t) : t ∈ (−ε, ε)} ⊂ R3

and let x̄ = (0, 0, 0) ∈ N , σ = (1, 2, 3). Then, ∆(σ) = {(α, α, α) : α ∈ R} and N is a smooth
submanifold of R3 that is symmetric with respect to the affine set ∆(σ), but it is not locally
symmetric. It can be easily proved that the set λ−1(M) is not a submanifold of S3 around the zero
matrix.

3.2 Structure of tangent and normal space

From now on

M is a locally symmetric C2-submanifold of Rn of dimension d,

unless otherwise explicitly stated. We also denote by TM(x̄) and NM(x̄) its tangent and normal
space at x̄ ∈M, respectively. In this subsection, we derive several natural properties for these two
spaces, stemming from the symmetry of M. The next lemma ensures that the tangent and normal
spaces at x̄ ∈M inherit the local symmetry of M.

Lemma 3.11 (Local symmetry of TM(x̄), NM(x̄)). If x̄ ∈M then

(i) σTM(x̄) = TM(x̄) for all σ ∈ S%(x̄);

(ii) σNM(x̄) = NM(x̄) for all σ ∈ S%(x̄) .

Proof. Assertion (i) follows directly from the definitions since the elements of TM(x̄) can be viewed
as the differentials at x̄ of smooth paths on M. Assertion (ii) stems from the fact that S%(σ) is
a group, as follows: for any w ∈ TM(x̄), v ∈ NM(x̄), and σ ∈ S%(σ) we have σ−1w ∈ TM(x̄) and
〈σv,w〉 = 〈v, σ−1w〉 = 0, showing that σ v ∈ [TM(x̄)]⊥ = NM(x̄).

Given a set S ⊂ Rn, denote by distS(x) := infs∈S ‖x− s‖ the distance of x ∈ Rn to S.

Proposition 3.12 (Local invariance of the distance). If x̄ ∈M, then

dist(x̄+TM(x̄))(x) = dist(x̄+TM(x̄))(σx) for any x ∈ Rn and σ ∈ S%(x̄) .

Proof. Assume that for some x ∈ Rn and σ ∈ S%(x̄) we have

dist(x̄+TM(x̄))(x) < dist(x̄+TM(x̄))(σx).

Then, there exists z ∈ TM(x̄) satisfying ||x− (x̄+ z)|| < dist(x̄+TM(x̄))(σx), which yields (recalling
σx̄ = x̄ and the fact that the norm is symmetric)

||x− (x̄+ z)|| = ||σx− (x̄+ σz)|| < dist(x̄+TM(x̄))(σx)

contradicting the fact that σz ∈ TM(x̄). The reverse inequality can be established similarly.

Let π̄T : Rn → x̄+ TM(x̄) be the projection onto the affine space x̄+ TM(x̄), that is,

π̄T (x) = Proj (x̄+TM(x̄))(x), (3.6)
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and similarly, let
π̄N (x) = Proj (x̄+NM(x̄))(x) (3.7)

denote the projection onto the affine space x̄+NM(x̄). We also introduce πT (·) and πN (·), the pro-
jections onto the tangent and normal spaces TM(x̄) and NM(x̄) respectively. Notice the following
relationships:

π̄T (x) + π̄N (x) = x+ x̄ and π̄T (x) = πT (x) + πN (x̄). (3.8)

Corollary 3.13 (Invariance of projections). Let x̄ ∈M. Then, for all x ∈ Rn and all σ ∈ S%(x̄)

(i) σπ̄T (x) = π̄T (σx),

(ii) σπ̄N (x) = π̄N (σx).

Proof. Let π̄T (x) = x̄ + u for some u ∈ TM(x̄) and let σ ∈ S%(x̄). Since σx̄ = x̄, by Proposi-
tion 3.12, and the symmetry of the norm we obtain

dist(x̄+TM(x̄))(x) = ||x− (x̄+ u)|| = ||σx− (x̄+ σu)|| = dist(x̄+TM(x̄))(σx).

Since σu ∈ TM(x̄), we conclude π̄T (σx) = x̄+ σu and assertion (i) follows.
Let us now prove the second assertion. Applying (3.8) for the point σx ∈ Rn, using (i) and the

fact that σx̄ = x̄ we deduce

σx+ x̄ = π̄T (σx) + π̄N (σx) = σπ̄T (x) + π̄N (σx) .

Applying σ−1 to this equation, recalling that σ−1x̄ = x̄ and equating with (3.8) we get (ii).

The following result relates the tangent space to the stratification.

Proposition 3.14 (Tangential projection vs stratification). Let x̄ ∈M∩∆(σ). Then, there exists
δ > 0 such that for any x ∈M∩B(x̄, δ) there exists σ′ ∈ S%(σ) such that

x, π̄T (x) ∈ ∆(σ′).

Proof. Choose δ > 0 so that the ball B(x̄, δ) intersects only those strata ∆(σ′) for which
σ′ ∈ S%(σ) (see Lemma 2.5(ii)). Shrinking δ > 0 further, if necessary, we may assume that the
projection π̄T is a one-to-one map between M∩B(x̄, δ) and its range. For any x ∈M∩B(x̄, δ) let
u ∈ TM(x̄) ∩ B(0, δ) be the unique element of TM(x̄) satisfying π̄T (x) = x̄+ u, or in other words
such that

distx̄+TM(x̄)(x) = ||x− (x̄− u)|| = min
z∈TM(x̄)

||(x− x̄)− z|| . (3.9)

Then, for some σ1, σ2 ∈ S%(σ) we have x̄+ u ∈ ∆(σ1) and x ∈ ∆(σ2). In view of Lemma 3.11 and
Lemma 2.5 we deduce

x̄+ σ2u = σ2(x̄+ u) ∈ (x̄+ TM(x̄)) ∩B(x̄, δ).

We are going to show now that σ1 ∼ σ2. To this end, note first that

||x− (x̄+ σ2u)|| = ||σ2x− (σ2x̄+ σ2u)|| = ||(x− x̄)− u||.

It follows from (3.9) that π̄T (x) = x̄+ σ2u, thus σ2u = u, which yields σ2(x̄+ u) = x̄+ u, σ1 - σ2,
by (2.5). If we assume that σ1 ≺ σ2 then σ1x 6= x (or else by (2.5) P (σ1) ⊇ P (x) = P (σ2) and
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σ1 % σ2, a contradiction). We have σ1x ∈M∩B(x̄, δ), but σ1x 6= x yields π̄T (x) 6= π̄T (σ1x). Thus,
there exists v ∈ TM(x̄) with

‖σ1x− (x̄+ v)‖ < ‖σ1x− (x̄+ u)‖ = ‖x− (x̄+ u)‖,

which contradicts Proposition 3.12. Thus, σ1 ∼ σ2 and x, x̄+ u ∈ ∆(σ1) = ∆(σ2).

We end this subsection by the following important property that locates the tangent and normal
spaces of M with respect to the active stratum ∆(σ).

Proposition 3.15 (Decomposition of TM(x̄), NM(x̄)). For any x̄ ∈M∩∆(σ) we have

Proj ∆(σ)⊥⊥(TM(x̄)) = TM(x̄) ∩∆(σ)⊥⊥

which yields
TM(x̄) = (TM(x̄) ∩∆(σ)⊥⊥)⊕ (TM(x̄) ∩∆(σ)⊥). (3.10)

Similarly,
NM(x̄) = (NM(x̄) ∩∆(σ)⊥⊥)⊕ (NM(x̄) ∩∆(σ)⊥). (3.11)

Proof. Lemma 2.7 and Lemma 3.11 show that for any u ∈ TM(x̄) we have

Proj ∆(σ)⊥⊥(u) =
1

|S%(σ)|

∑
σ′%σ

σ′u ∈ TM(x̄),

which yields
Proj ∆(σ)⊥⊥(TM(x̄)) ⊆ TM(x̄) ∩∆(σ)⊥⊥.

The opposite inclusion and decomposition (3.10) are straightforward.
Let us now prove the decomposition of NM(x̄). For any u ∈ TM(x̄), by (3.10) there are

(unique) vectors u⊥ ∈ TM(x̄)∩∆(σ)⊥ and u⊥⊥ ∈ TM(x̄)∩∆(σ)⊥⊥ such that u = u⊥+u⊥⊥. Since
Rn = ∆(σ)⊥ ⊕ ∆(σ)⊥⊥, we can decompose any v ∈ NM(x̄) correspondingly as v = v⊥ + v⊥⊥.
Since u⊥⊥, u⊥ ∈ TM(x̄) = NM(x̄)⊥ we have 〈u⊥, v〉 = 0 and 〈u⊥⊥, v〉 = 0. Using the fact
that ∆(σ)⊥ and ∆(σ)⊥⊥ are orthogonal we get 〈u⊥⊥, v⊥〉 = 0 (respectively, 〈u⊥, v⊥⊥〉 = 0)
implying that 〈u⊥⊥, v⊥⊥〉 = 0 (respectively, 〈u⊥, v⊥〉 = 0), and finally 〈u, v⊥〉 = 0 (respectively,
〈u, v⊥⊥〉 = 0). Since u ∈ TM(x̄) has been chosen arbitrarily, we conclude v⊥ ∈ NM(x̄)∩∆(σ)⊥ and
v⊥⊥ ∈ NM(x̄) ∩∆(σ)⊥⊥. In other words, NM(x̄) is equal to the (direct) sum of NM(x̄) ∩∆(σ)⊥

and NM(x̄) ∩∆(σ)⊥⊥.

The following corollary is a simple consequence of the fact that TM(x̄)⊕NM(x̄) = Rn.

Corollary 3.16 (Decomposition of ∆(σ)⊥, ∆(σ)⊥⊥). For any x̄ ∈M∩∆(σ) we have

∆(σ)⊥ = (∆(σ)⊥ ∩ TM(x̄))⊕ (∆(σ)⊥ ∩NM(x̄))

∆(σ)⊥⊥ = (∆(σ)⊥⊥ ∩ TM(x̄))⊕ (∆(σ)⊥⊥ ∩NM(x̄)).

The subspaces ∆(σ)⊥⊥ ∩ NM(x̄) and TM(x̄) ∩ ∆(σ)⊥ in the previous statements play an im-
portant role in Section 4 when constructing adapted local equations.
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3.3 Location of a locally symmetric manifold

Definition 3.5 yields important structural properties on M. These properties are hereby quan-
tified with the results of this section.

We need the following standard technical lemma about isometries between two Riemannian
manifolds. This lemma will be used in the sequel as a link from local to global properties. Given
a Riemannian manifold M we recall that an open neighborhood V of a point p ∈ M is called
normal if every point of V can be connected to p through a unique geodesic lying entirely in V . It
is well-known (see Theorem 3.7 in [4, Chapter 3] for example) that every point of a Riemannian
manifold M (that is, M is at least C2) has a normal neighborhood. A more general version of the
following lemma can be found in [7, Chapter VI], we include its proof for completeness.

Lemma 3.17 (Determination of isometries). Let M , N be two connected Riemannian manifolds.
Let fi : M → N , i ∈ {1, 2} be two isometries and let p ∈M be such that

f1(p) = f2(p) and df1(v) = df2(v) for every v ∈ TM (p) .

Then, f1 = f2.

Proof. Every isometry mapping between two Riemannian manifolds sends a geodesic into a
geodesic. For any p ∈ M and v ∈ TM (p), we denote by γv,p (respectively by γ̃v̄,p̄) the unique
geodesic passing through p ∈ M with velocity v ∈ TM (p) (respectively, through p̄ ∈ N with
velocity v̄ ∈ TN (p̄)). Using uniqueness of the geodesics, it is easy to see that for all t

f1(γv,p(t)) = γ̃df1(v),f1(p)(t) = γ̃df2(v),f2(p)(t) = f2(γv,p(t)). (3.12)

Let V be a normal neighborhood of p, let q ∈ V and [0, 1] � t 7→ γv,p(t) ∈ M be the geodesic
connecting p to q and having initial velocity v ∈ TM (p). Applying (3.12) for t = 1 we obtain
f1(q) = f2(q). Since q was arbitrarily chosen, we get f1 = f2 on V . (Thus, since V is open, we also
deduce df1(v) = df2(v) for every v ∈ TM (q).)

Let now q be any point in M . Since connected manifolds are also path connected we can join
p to q with a continuous path t ∈ [0, 1] 7→ δ(t) ∈M . Consider the set

{t ∈ [0, 1] : f1(δ(t)) = f2(δ(t)) and df1(v) = df2(v) for every v ∈ TM (δ(t))}. (3.13)

Since fi : M → N and dfi : TM → TN (i ∈ {1, 2}) are continuous maps, the above set is closed.
further, since f1 = f2 in a neighborhood of p it follows that the supremum in (3.13), denoted t0,
is strictly positive. If t0 6= 1 then repeating the argument for the point p1 = δ(t0), we obtain a
contradiction. Thus, t0 = 1 and f1(q) = f2(q).

The above lemma will now be used to obtain the following result which locates the locally
symmetric manifold M with respect to the stratification.

Corollary 3.18 (Reduction of the ambient space to ∆(σ)⊥⊥). Let M be a locally symmetric
manifold. If for some x̄ ∈M, σ ∈ Σn, and δ > 0 we have M∩B(x̄, δ) ⊆ ∆(σ), then M⊆ ∆(σ)⊥⊥.

Proof. Suppose first that M is strongly locally symmetric. Let f1 : M → M be the identity
isometry on M and let f2 : M → M be the isometry determined by the permutation σ, that is,
f2(x) = σx for all x ∈ M. The assumption M∩ B(x̄, δ) ⊂ ∆(σ) yields that the isometries f1 and
f2 coincide around x̄. Thus, by Lemma 3.17 (with M = N = M) we conclude that f1 and f2

coincide on M. This shows that M⊂ ∆(σ)⊥⊥.
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In the case when M is locally symmetric, assume, towards a contradiction, that there exists
¯̄x ∈M\∆(σ)⊥⊥ Consider a continuous path t ∈ [0, 1] 7→ p(t) ∈M with p(0) = x̄ and p(1) = ¯̄x. Find
0 = t0 < t1 < · · · < ts = 1 and {δi > 0 : i = 0, . . . , s} such that Mi := M∩B(p(ti), δi) is strongly
locally symmetric, the union of all Mi covers the path p(t), Mi−1 ∩Mi 6= ∅, and M0 ⊂ ∆(σ). Let
s′ be the first index such that Ms′ 6⊂ ∆(σ)⊥⊥, clearly s′ > 0. Let x′ ∈Ms′−1 ∩Ms′ ∩∆(σ)⊥⊥ and
note that x′ ∈ ∆(σ′) for some σ′ - σ. By the strong local symmetry of Ms′−1 and Ms′ , they are
both invariant under the permutation σ. Since σ coincides with the identity on Ms′−1 and since
Ms′−1 ∩Ms′ is an open subset of Ms′ , we see by Lemma 3.17 that σ coincides with the identity
on Ms′ . This contradicts the fact that Ms′ 6⊂ ∆(σ)⊥⊥.

In order to strengthen Corollary 3.18 we need to introduce a new notion.

Definition 3.19 (Much smaller permutation). For two permutations σ, σ′ ∈ Σn.

• The permutation σ′ is called much smaller than σ, denoted σ′ ≺≺ σ, whenever σ′ ≺ σ and a
set in P (σ′) is formed by merging at least two sets from P (σ), of which at least one contains
at least two elements.

• Whenever σ′ ≺ σ but σ′ is not much smaller than σ we shall write σ′ ≺∼ σ. In other words,
if σ′ ≺ σ but σ′ is not much smaller than σ, then every set in P (σ′) that is not in P (σ) is
formed by merging one-element sets from P (σ).

Example 3.20 (Smaller vs much smaller permutations). The following examples illustrate the
notions of Definition 3.19. We point out that part (vii) will be used frequently.

(i) (123)(45)(6)(7) ≺≺ (1)(23)(45)(6)(7).

(ii) Consider σ = (167)(23)(45) and σ′ = (1)(23)(45)(6)(7). In this case, σ ≺ σ′ but σ is not much
smaller than σ′ because only cycles of length one are merged to form the cycles in σ. Thus,
σ ≺∼ σ′.

(iii) If σ′′ - σ′ and σ′ ≺≺ σ then σ′′ ≺≺ σ.

(iv) It is possible to have σ′ ≺∼ σ and σ′′ ≺∼ σ but σ′′ ≺≺ σ′, as shown by σ = (1)(2)(3)(45),
σ′ = (1)(23)(45), and σ′′ = (123)(45).

(v) If σ′ ≺ σ and σ fixes at most one element from Nn, then σ′ ≺≺ σ.

(vi) If σ ∈ Σn \ idn then σ ≺∼ idn.

(vii) If σ′ - σ and if σ′ is not much smaller than σ, then either σ′ ∼ σ or σ′ ≺∼ σ.

(viii) If σ′′ ≺∼ σ′ and σ′ ≺∼ σ, then σ′′ ≺∼ σ. That is, the relationship ‘not much smaller’ is
transitive.

We now describe a strengthening of Corollary 3.18. It lowers the number of strata that can
intersect M, hence better specifies the location of the manifold M.

Corollary 3.21 (Inactive strata). Let M be a locally symmetric manifold. If for some x̄ ∈ M,
σ ∈ Σn and δ > 0 we have M∩B(x̄, δ) ⊆ ∆(σ) then

M⊆ ∆(σ)⊥⊥ \
⋃

σ′≺≺σ

∆(σ′).
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Proof. By Corollary 3.18, we already have M⊆ ∆(σ)⊥⊥. Assume, towards a contradiction, that
M∩∆(σ′) 6= ∅ for some σ′ ≺≺ σ. This implies in particular that σ is not the identity permutation,
see Example 3.20 (vi). Consider a continuous path connecting x̄ with a point in M∩∆(σ′) 6= ∅.
Let z be the first point on that path such that z ∈ ∆(τ) for some τ ≺≺ σ. (Such a first point exists
since whenever τ ≺ σ, the points in ∆(τ) are boundary points of ∆(σ).) Let δ > 0 be such that
M∩ B(z, δ) is strongly locally symmetric. Let z̄ ∈ M ∩ B(z, δ) be a point on the path before z.
That means z̄ is in a stratum ∆(σ̄) with σ̄ ≺∼ σ or σ̄ ∼ σ. To summarize:

z ∈M∩∆(τ), where τ ≺≺ σ and z̄ ∈M∩∆(σ̄) ∩B(z, δ) 6= ∅, where σ̄ ≺∼ σ or σ̄ ∼ σ.

By Definition 3.19 and the fact τ ≺≺ σ, we have that for some 2 ≤ ` < k ≤ n, and some
subset {a1, . . . , ak} of Nn, the cycle (a1 . . . a`) belongs to the cycle decomposition of σ while the
set {a1, . . . , a`, a`+1, . . . , ak} belongs to the partition P (τ). Now, since σ̄ ≺∼ σ or σ̄ ∼ σ, the
cycle (a1 . . . a`) belongs to the cycle decomposition of σ̄ as well. In order to simplify notation,
without loss of generality, we assume that ai = i for i ∈ {1, . . . , k}.

Since z̄ = (z̄1, . . . , z̄n) ∈ M ∩ ∆(σ̄) ∩ B(z, δ) we have z̄1 = · · · = z̄` = α and z̄i 6= α for
i ∈ {`+ 1, . . . , n}. By the fact that M∩B(z, δ) is strongly locally symmetric, we deduce that

y := σ◦z̄ ∈M ⊂ ∆(σ)⊥⊥ for every σ◦ � τ. (3.14)

We consider separately three cases. In each one we define appropriately a permutation σ◦ � τ in
order to obtain a contradiction with (3.14).

Case 1. Assume ` > 2 and let σ◦ ∈ Σn be constructed by exchanging the places of the elements
a` and ak in the cycle decomposition of σ. Obviously, σ◦ � τ . Then, y = σ◦z̄ = (y1, . . . , yn) =
(z̄σ−1

◦ (1), . . . , z̄σ−1
◦ (n)) and notice that we have y1 = z̄σ−1

◦ (1) = z̄k 6= α, while y2 = z̄σ−1
◦ (2) = z̄1 = α.

In view of (2.8) we deduce that y /∈ ∆(σ)⊥⊥, a contradiction.
Case 2. Let ` = 2 and suppose that a3 ≡ 3 belongs to a cycle of length one in the cycle

decomposition of σ (recall that we have assumed ai = i, for all i ∈ {1, . . . , k}). In other words,
σ = (1 2)(3)σ′, where σ′ is a permutation of {4, . . . , n}. Then, defining σ◦ := (1 3)(2)σ′ we get
y1 = z̄3 6= α and y2 = z̄2 = α, thus again y /∈ ∆(σ)⊥⊥.

Case 3. Let ` = 2 and suppose that a3 ≡ 3 belongs to a cycle of length at least two in
the cycle decomposition of σ. Then, σ = (1 2) (3 p . . .) · · · (. . . q)σ′, where σ′ is a permutation
of {k + 1, . . . , n}, and where the union of the elements in the cycles (1 2) (3 p . . .) · · · (. . . q) is
precisely {1, 2, . . . , k}. We define σ◦ = (1 2 3) (p . . .) · · · (. . . q)σ′ � τ and obtain y1 = z̄3 6= α and
y2 = z̄1 = α, thus again y /∈ ∆(σ)⊥⊥.

The proof is complete.

3.4 The characteristic permutation σ∗ of M

In order to better understand the structure of the lo lly symmetric manifold M, we exhibit a
permutation (more precisely, a set of equivalent permutations) that is characteristic of M. To this
end, we introduce the following sets of active permutations. (These two sets will be used only in
this and the next subsections.) Define

∆(M) := {σ ∈ Σn : M∩∆(σ) 6= ∅},

and
ΣM := {σ ∈ Σn : ∃(x̄ ∈M, δ > 0) such that M∩B(x̄, δ) ⊆ ∆(σ)} .

We note that if σ ∈ ∆(M) then σ′ ∈ ∆(M) whenever σ ∼ σ′, and similarly for ΣM. The following
result is straightforward.
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Lemma 3.22 (Maximality of ΣM in ∆(M)). The elements of ΣM are equivalent to each other
and maximal in ∆(M).

Proof. It follows readily that ∆(M) 6= ∅ and ΣM ⊂ ∆(M). Let τ ∈ ∆(M) and σ ∈ ΣM. By
Corollary 3.18 we deduce that M ⊂ ∆(σ)⊥⊥ and by Proposition 2.3(iii) that τ - σ. This proves
maximality of σ in ∆(M). The equivalence of the elements of ΣM is obvious.

The next lemma is, in a sense, a converse of Corollary 3.18. It shows in particular that ΣM 6= ∅.

Lemma 3.23 (Optimal reduction of the ambient space). For a locally symmetric manifold M,
there exists a permutation σ∗ ∈ Σn, such that

ΣM = {σ ∈ Σn : σ ∼ σ∗} . (3.15)

In particular, if M⊆ ∆(σ̄)⊥⊥ for some σ̄ ∈ Σn then σ∗ - σ̄.

Proof. Assertion (3.15) follows directly from Lemma 3.22 provided one proves that ΣM 6= ∅. To
do so, we assume that M ⊆ ∆(σ̄)⊥⊥ for some σ̄ ∈ Σn (this is always true for σ̄ = idn) and we
prove both that ΣM 6= ∅ as well as the second part of the assertion. Notice that σ - σ̄ for all
σ ∈ ∆(M). Let us denote by σ◦ :=

∨
∆(M) any supremum of the nonempty set ∆(M) (that is,

any permutation σ◦ whose partition is the supremum of the partitions P (σ) for all σ ∈ ∆(M)). If
σ◦ ∈ ∆(M), then σ◦ ∈ ΣM, σ◦ = σ∗ and we are done. If σ◦ /∈ ∆(M), then choose any permutation
σ◦ ∈ ∆(M) such that

{σ ∈ ∆(M) : σ◦ � σ � σ◦} = ∅. (3.16)

Such a permutation σ◦ exists since ∆(M) is a finite partially ordered set. By the definition of σ◦
there exists x̄ ∈ M∩∆(σ◦), and by Lemma 2.5(ii) we can find δ > 0 such that B(x̄, δ) intersects
only strata ∆(σ) corresponding to permutations σ % σ◦. If there exists x ∈M∩B(x̄, δ) such that
x ∈ ∆(σ) for some permutation σ � σ◦, then σ ∈ ∆(M) and by (3.16) σ ∼ σ◦ contradicting the
assumption that σ◦ /∈ ∆(M). Thus, M∩B(x̄, δ) ⊆ ∆(σ◦) and σ◦ = σ∗ ∈ ΣM.

Corollary 3.24 (Density of M∩∆(σ∗) in M). For every x̄ ∈ M, every δ > 0 and σ∗ ∈ ΣM, we
have

M∩∆(σ∗) ∩B(x̄, δ) 6= ∅.

Proof. Suppose x̄ ∈ M∩∆(σ) and fix δ > 0 small enough so that B(x̄, δ) intersects only strata
∆(σ′) for σ′ % σ. Then, by Lemma 2.5, we have that the manifold M′ := M∩ B(x̄, δ) is locally
symmetric. By Lemma 3.23, we obtain that ΣM′ 6= ∅. Since ΣM′ ⊂ ΣM, and all permutations in
ΣM are equivalent, we have ΣM′ = ΣM. Thus, M′ ∩B(ȳ, ρ) ⊂ ∆(σ∗) for ȳ ∈ M′ ⊂M and some
ρ > 0, whence the result follows.

Clearly, if idn ∈ ΣM, then ΣM = {idn}. In particular, we have the following easy result.

Corollary 3.25. For a locally symmetric manifold M⊂ Rn, we have

σ∗ = idn ⇐⇒ M∩∆(idn) 6= ∅.

Proof. The necessity is obvious, while the sufficiency follows from Lemma 3.22, since idn ∈ ∆(M)
is the unique maximal element of Σn.
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Thus, the permutation σ∗ is naturally associated with the locally symmetric manifold M via
the property

∃(x̄ ∈M, δ > 0) such that M∩B(x̄, δ) ⊆ ∆(σ∗). (3.17)

Notice that σ∗ is unique modulo∼, and will be called characteristic permutation ofM. Even though
the definition of the characteristic permutation σ∗ is local, it has global properties stemming from
Corollary 3.21, that is,

M ⊆ ∆(σ∗)⊥⊥ \
⋃

σ≺≺σ∗

∆(σ) =
⋃

σ ∼ σ∗
σ ≺∼ σ∗

∆(σ) ⊆ ∆(σ∗)⊥⊥ , (3.18)

and σ∗ is the minimal permutation for which (3.18) holds. The above formula determines precisely
which strata can intersect M. Indeed, if σ ∈ ∆(M) then necessarily either σ ∼ σ∗ or σ ≺∼ σ∗.
Notice also that when σ ≺∼ σ∗, every set in P (σ), which is not in P (σ∗), is obtained by merging
sets of length one from P (σ∗). Another consequence is the following relation:

TM(x̄) ⊂ ∆(σ∗)⊥⊥ for all x̄ ∈M . (3.19)

Remark 3.26. Observe that for any fixed permutation σ∗ ∈ Σn, the set⋃
σ ∼ σ∗
σ ≺∼ σ∗

∆(σ)

is a locally symmetric manifold with characteristic permutation σ∗. On the other hand, (3.18)
shows that the affine space ∆(σ)⊥⊥ is a locally symmetric manifold if (and only if) σ ∈ Σn is equal
to idn or is a cycle of length n.

We conclude with another fact about the characteristic permutation, that stems from the as-
sumption M ∩ Rn

≥ 6= ∅ (see Definition 3.5). Though (3.18) describes well the strata that can
intersect the manifold M (which is going to be sufficient for most of our needs) we still need to say
more about a slightly finer issue - a necessary condition for a stratum to intersect M∩Rn

≥.

Lemma 3.27. Suppose that x̄ ∈M∩Rn
≥ ∩∆(σ). Then, every set Ii of the partition

P (σ) = {I1, . . . , Iκ+m}

contains consecutive integers from Nn.

Proof. The lemma is trivially true, for sets Ii with cardinality one. So, suppose on the contrary,
that for some ` ∈ {1, . . . , κ + m}, the set I` contains at least two elements but does not contain
consecutive numbers from Nn. That is, there are three indexes i, j, k ∈ Nn with i < j < k such
that i, k ∈ I` but j 6∈ I`. Then, the fact x̄ ∈ ∆(σ) implies that x̄i = x̄k, while the fact that x̄ ∈ Rn

≥
implies that x̄i ≥ x̄j ≥ x̄k. We obtain x̄i = x̄j = x̄k, which contradicts the assumption j 6∈ I`.

Lemma 3.27 has consequences for the characteristic permutation σ∗ of M.

Theorem 3.28 (Characteristic partition P (σ∗)). Every set in the partition P (σ∗) contains con-
secutive integers from Nn.
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Proof. Let σ∗ ∈ ΣM be the characteristic permutation ofM. SinceM∩Rn
≥ 6= ∅ by Definition 3.5,

there is a stratum ∆(σ) intersecting M∩Rn
≥. Formula (3.18) implies that σ is not much smaller

than σ∗, i.e. we have σ ∼ σ∗ or σ ≺∼ σ∗. If a set I∗i ∈ P (σ∗) has more than one element, then it
must be an element of the partition P (σ) as well, by the fact that σ is not much smaller than σ∗.
Thus, I∗i contains consecutive elements from Nn, by Lemma 3.27.

For example, according to Theorem 3.28, the permutation (1)(274)(35)(6) ∈ Σ7 cannot be the
characteristic permutation of any locally symmetric manifold M in R7 (that intersects R7

≥).
Let us illustrate the limitations imposed by the previous result. Suppose that n = 12 and the

partition P (σ∗) of N12 corresponding to σ∗ ∈ Σ12 is

P (σ∗) = {{1}, {2}, {3, 4, 5}, {6}, {7}, {8}, {9}, {10, 11, 12}}.

Pick a permutation σ ∈ Σ12 with partition

P (σ) = {{1}, {2}, {3, 4, 5}, {6, 8, 9}, {7}, {10, 11, 12}}.

In comparison with Formula (3.18), σ is not much smaller than σ∗ but the stratum ∆(σ) does not
intersect M∩Rn

≥. Thus, the set of strata that may intersect with M∩Rn
≥ is further reduced.

3.5 Canonical decomposition induced by σ∗

We explain in this subsection that the characteristic permutation σ∗ of M induces a decom-
position of the space Rn that will be used later to control the lift into the matrix space Sn. We
consider the partition P (σ∗) of Nn associated with σ∗, and we define

m∗ := number of sets in P (σ∗) that have more than one element, (3.20)

and
κ∗ := number of sets in P (σ∗) with exactly one element. (3.21)

In other words, κ∗ is the number of elements of Nn that are fixed by the permutation σ∗, or
equivalently, κ∗ := |Nn \ supp(σ∗)|. Hence, we have

P (σ∗) := {I∗1 , . . . , I∗κ∗ , I
∗
κ∗+1, . . . , I

∗
κ∗+m∗}, (3.22)

where {I∗1 , . . . , I∗κ∗} are the blocks of size one. The following example treats the particular case
where σ∗ has at most one cycle of length one.

Example 3.29 (Case: κ∗ = 0 or 1). The assumption κ∗ ∈ {0, 1} means that the permutation σ∗
fixes at most one element, or in other words, for every x ∈M at most one coordinate of the vector
x = (x1, . . . , xn) is not repeated. In this case, by Example 3.20(v), every σ that is smaller than σ∗ is
much smaller than σ∗ and therefore (3.18) together with Proposition 2.3(iii) yieldsM⊂ ∆(σ∗).

The partition of the characteristic permutation σ∗ ofM yields a canonical split of Rn associated
to M, as a direct sum of two parts, the spaces Rκ∗ and Rn−κ∗ , as follows: any vector x ∈ Rn is
represented as

x = xF ⊗ xM (3.23)

where
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• xF ∈ Rκ∗ is the subvector of x ∈ Rn obtained by collecting from x the coordinates that have
indices in Nn \ supp(σ∗) and preserving their relative order;

• xM ∈ Rn−κ∗ is the subvector of x ∈ Rn obtained by collecting from x the remaining n− κ∗
coordinates, preserving their order again.

It is readily seen that the canonical split is linear and also a reversible operation. Reversibility means
that given any two vectors xF ∈ Rκ∗ and xM ∈ Rn−κ∗ , there is a unique vector xF ⊗ xM ∈ Rn,
such that

(xF ⊗ xM )F = xF and (xF ⊗ xM )M = xM .

This operation is called canonical product.

Example 3.30. If σ∗ = (1)(23)(4)(567)(8) ∈ Σ8 and x ∈ R8 then, xF = (x1, x4, x8) and xM =
(x2, x3, x5, x6, x7). Conversely, if

xF = (a1, a2, a3) and xM = (b1, b2, b3, b4, b5)

then
xF ⊗ xM = (a1, b1, b2, a2, b3, b4, b5, a3).

In addition, if x ∈ R8
≥ then xF ∈ R3

≥ and xM ∈ R5
≥, but the converse is not true: if xF ∈ R3

≥ and
xM ∈ R5

≥ then in general, xF ⊗ xM is not in R8
≥.

Furthermore, if σ ∈ Σn is any permutation whose cycles do not contain elements simultaneously
from supp(σ∗) and Nn \ supp(σ∗), then it can be decomposed as

σ = σF ◦ σM , (3.24)

where

• σF ∈ Σκ∗ is obtained by those cycles of σ that contain only elements from Nn \ supp(σ∗),

• σM ∈ Σn−κ∗ is obtained from the remaining cycles of σ (those that do not contain any element
of Nn \ supp(σ∗)).

Observe that σ is the infimum of σF and σM (σ = σF ∧ σM ). We refer to (3.24) as the
(F,M)-decomposition of the permutation σ. For example, applying this decomposition to σ∗ yields

σF
∗ = idκ∗ , (3.25)

where idκ∗ is the identity permutation on the set Nn \ supp(σ∗). Note that in the particular
case κ∗ = n, we have σ∗ = idn, all coefficients of x ∈ ∆(σ∗) are different, and x = xF .

The following proposition is a straightforward consequence of (3.25) and Example 3.20(v).

Proposition 3.31 ((F,M)-decomposition for σ ≺∼ σ∗). The following equivalences hold:

σ ∼ σ∗ ⇐⇒ σF = idκ∗ and σM ∼ σ∗
M

and
σ ≺∼ σ∗ ⇐⇒ σF ≺ idκ∗ and σM ∼ σ∗

M .

Note that the (F,M)-decomposition is not going to be applied to permutations σ ∈ Σn that are
much smaller than σ∗, since these permutations may have a cycle containing elements from both
supp(σ∗) and Nn \ supp(σ∗). In fact, (3.24) can be applied only to permutations τ ∈ S%(σ) with
σ ∈ ∆(M), as explained in the following result, whose proof is straightforward.

Proposition 3.32 ((F,M)-decomposition for active permutations). Let σ ∈ ∆(M) and τ ∈ S%(σ).
Then, τ admits (F,M)-decomposition τ = τF ◦ τM given in (3.24) with

σF - τF - idκ∗ and σM
∗ ∼ σM - τM .
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3.6 Reduction of the normal space

In this section we fix a point x̄ and a permutation σ such that x̄ ∈ M∩∆(σ), and reduce the
relevant (active) part of the tangent and normal space with respect to the canonical split

Rn = Rκ∗ ⊗Rn−κ∗ (3.26)

induced by the characteristic permutation σ∗ of M.
Let us consider any permutation τ ∈ Σn for which the decomposition (3.24)

τ = τF ◦ τM

makes sense (that is, τ ∈ S%(σ), where σ ∼ σ∗ or σ ≺∼ σ∗). Then, we can either consider τF as an
element of Σn (giving rise to a stratum ∆(τF ) ⊂ Rn) or as an element of Σκ∗ (acting on the space
Rκ∗). In this latter case, and in other to avoid ambiguities, we introduce the notation

[∆(τF )Rκ∗ ] := {z ∈ Rκ∗ : P (z) = P (τF )} (3.27)

to refer to the corresponding stratum of Rκ∗ . The notations [∆(τF )Rκ∗ ]⊥, [∆(τF )Rκ∗ ]⊥⊥ refer thus
to the corresponding linear subspaces of Rκ∗ . We do the same for the stratum [∆(τM )Rn−κ∗ ] (and
the linear subspaces [∆(τM )Rn−κ∗ ]⊥, [∆(τM )Rn−κ∗ ]⊥⊥), whenever the permutation τM is considered
as an element of Σn−κ∗ acting on Rn−κ∗ . A careful glance at the formulas (2.7) and (2.8) reveals
the following relations:

∆(τF )⊥ = [∆(τF )Rκ∗ ]⊥ ⊗ {0}n−κ∗ and ∆(τM )⊥ = {0}κ∗ ⊗ [∆(τM )Rn−κ∗ ]⊥ ; (3.28)

and respectively,

∆(τF )⊥⊥ = [∆(τF )Rκ∗ ]⊥⊥ ⊗ Rn−κ∗ and ∆(τM )⊥⊥ = Rκ∗ ⊗ [∆(τM )Rn−κ∗ ]⊥⊥ . (3.29)

It follows easily from (2.12) and (3.29) that

∆(τ)⊥⊥ = [∆(τF )Rκ∗ ]⊥⊥ ⊗ [∆(τM )Rn−κ∗ ]⊥⊥. (3.30)

It also follows easily that

∆(τ)⊥ = [∆(τF )Rκ∗ ]⊥ ⊗ [∆(τM )Rn−κ∗ ]⊥. (3.31)

In the sequel, we apply the canonical split (3.26) to the tangent space TM(x̄). In view of (3.19)
and (3.30) for τ = σ∗ and the fact that σM

∗ ∼ σM (see Proposition 3.31), we obtain that for every
w ∈ TM(x̄)

w = wF ⊗ wM where wF ∈ Rκ∗ and wM ∈ [∆(σM )Rn−κ∗ ]⊥⊥ ⊂ Rn−κ∗ , (3.32)

where each coordinate of wM is repeated at least twice.
The following theorem reveals a analogous relationship for the canonical split of the normal

space NM(x̄) of M at x̄. It is the culmination of most of the developments up to now and thus the
most important auxiliary result in this work. We start by a technical result.

Lemma 3.33. Let x̄ ∈ M ∩ ∆(σ) and let the (F,M)-decomposition of σ be σ = σF ◦ σM . Let
the partition of Nκ∗ defined by σF be P (σF ) = {I1, . . . , Im}. Then, for every ε > 0, there exists
w ∈ TM(x̄) ∩ B(0, ε), such that in vector wF ∈ Rκ∗ every subvector wF

Ii
has distinct coordinates,

for i ∈ Nm.
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Proof. By Corollary 3.24, we can chose x ∈ M ∩ ∆(σ∗) arbitrarily close to x̄. Now apply
Proposition 3.14 to x̄ and x to conclude that x, π̄T (x) ∈ ∆(σ′) for some σ′ % σ. Necessarily, we
have σ′ ∼ σ∗, implying that x, π̄T (x) ∈ ∆(σ∗). This shows that (π̄T (x))F has distinct coordinates.
In other words, there is a vector w ∈ TM(x̄) such that (π̄T (x))F = (x̄+w)F = x̄F +wF has distinct
coordinates. Since x can be chosen arbitrarily close to x̄, we can assume that w is arbitrarily close
to 0. Finally, since x̄F ∈ [∆(σF )Rκ∗ ] and wF = (x̄F + wF )− x̄F we conclude that wF

Ii
has distinct

coordinates, for i ∈ Nm.

Theorem 3.34 (Reduction of the normal space). Let x̄ ∈ M ∩ ∆(σ) and v ∈ NM(x̄). Let
v = vF ⊗ vM and σ = σF ◦ σM be the canonical split and the (F,M)-decomposition defined in
(3.23) and (3.24) respectively. Then,

vF ∈ [∆(σF )Rκ∗ ]⊥⊥. (3.33)

Proof. Let us decompose v ∈ NM(x̄) according to Proposition 3.15, that is, v = v⊥⊥ + v⊥ where

v⊥⊥ ∈ NM(x̄) ∩∆(σ)⊥⊥ and v⊥ ∈ NM(x̄) ∩∆(σ)⊥.

Then,
vF = vF

⊥⊥ + vF
⊥ and vM = vM

⊥⊥ + vM
⊥ .

Since v⊥ ∈ ∆(σ)⊥ it follows by (3.31) that vF
⊥ ∈ [∆(σF )Rκ∗ ]⊥. Note further that since σ ∈ ∆(M),

we have σ ≺∼ σ∗, see (3.18). Let now w = wF ⊗wM be any element of TM(x̄) for which wF ∈ Rκ∗

has the property described in Lemma 3.33. Pick any permutation τ ∈ S%(σ). Then, τ admits a
canonical decomposition τ = τF ◦ τM with τM % σM and τF % σF (Proposition 3.32). It follows
that (τw)F = τFwF , (τw)M = τMwM = wM (in view of (3.32)) and τw ∈ TM(x̄) (in view of
Lemma 3.11(i)). Thus, we deduce successively:

0 = 〈v⊥, τw〉 = 〈vF
⊥, (τw)F 〉 + 〈vM

⊥ , (τw)M 〉 = 〈vF
⊥, τ

FwF 〉 + 〈vM
⊥ , w

M 〉.

This yields
〈vF
⊥, τ

FwF 〉 = −〈vM
⊥ , w

M 〉,

which in view of Corollary 5.2 in the Appendix (applied to x := vF
⊥ ∈ [∆(σF )Rκ∗ ]⊥, σ := σF , y :=

wF , σ′ := τF , and α := −〈vM
⊥ , w

M 〉) yields vF
⊥ = {0}κ∗ . Finally, let us recall that v⊥⊥ ∈ ∆(σ)⊥⊥,

which in view of (3.30) yields vF
⊥⊥ ∈ [∆(σF )Rκ∗ ]⊥⊥. Thus, vF = vF

⊥⊥ ∈ [∆(σF )Rκ∗ ]⊥⊥. The proof
is complete.

3.7 Tangential parametrization of a locally symmetric manifold

In this subsection we consider a local equation of the manifold, called tangential parametrization.
We briefly recall some general properties of this parametrization (for any manifold M) and then,
we make use of Theorem 3.34 to specify it to our context.

The local inversion theorem asserts that for some δ > 0 sufficiently small the restriction of π̄T

around x̄ ∈M
π̄T : M∩B(x̄, δ) → x̄+ TM(x̄)

is a diffeomorphism of M∩ B(x̄, δ) onto its image (which is an open neighborhood of x̄ relatively
to the affine space x̄+ TM(x̄)). Then, there exists a smooth map

φ : (x̄+ TM(x̄)) ∩B(x̄, δ) → NM(x̄), (3.34)
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such that
M∩B(x̄, δ) = {y ∈ Rn : y = x+ φ(x), x ∈ (x̄+ TM(x̄)) ∩B(x̄, δ)}. (3.35)

In words, the function φ measures the difference between the manifold and its tangent space.
Obviously, φ ≡ 0 if M is an affine manifold around x̄. Note that, technically, the domain of the
map φ is the open set π̄T (M∩ B(x̄, δ)), which may be a proper subset of (x̄ + TM(x̄)) ∩ B(x̄, δ).
Even though we keep this in mind, it will not have any bearing on the developments in the sequel.
Thus, for sake of readability we will avoid introducing more precise but also more complicated
notation, for example, rectangular neighborhoods around x̄.

We say that the map ψ : (x̄+ TM(x̄)) ∩B(x̄, δ) →M∩B(x̄, δ) defined by

ψ(x) = x+ φ(x) (3.36)

is the tangential parametrization of M around x̄. This function is indeed smooth, one-to-one and
onto, with a full rank Jacobian matrix Jψ(x̄): it is a local diffeomorphism at x̄, and more precisely
its inverse is π̄T , that is, locally π̄T (ψ(x)) = x. The above properties of ψ hold for any manifold.

Let us return to the situation where M is a locally symmetric manifold. We consider its
characteristic permutation σ∗, and we make the following assumption on the neighborhood.

Assumption 3.35. Let M be a locally symmetric C2-submanifold of Rn of dimension d and of
characteristic permutation σ∗. We consider x̄ ∈M∩∆(σ) and we take δ > 0 small enough so that:

1. B(x̄, δ) intersects only strata ∆(σ′) with σ′ % σ (recall Lemma 2.5);

2. M∩B(x̄, δ) is a strongly locally symmetric manifold;

3. M∩ B(x̄, δ) is diffeomorphic to its projection on x̄ + TM(x̄); in other words, the tangential
parametrization holds.

This ensures that
∆(σ)⊥⊥ ∩B(x̄, δ) = ∆(σ) ∩B(x̄, δ).

This situation enables us to specify the general properties of the tangential parametrization.

Lemma 3.36 (Tangential parametrization). Let x̄ ∈ M ∩ ∆(σ). Then, the function φ in the
tangential parametrization satisfies

φ(x) ∈ NM(x̄) ∩∆(σ)⊥⊥. (3.37)

Moreover, for all x ∈ (x̄+ TM(x̄)) ∩B(x̄, δ) and for all σ′ ∈ S%(σ) we have

ψ(σ′x) = σ′ψ(x) (3.38)

and
φ(σ′x) = σ′φ(x) = φ(x). (3.39)

Proof. Recalling the direct decomposition of the normal space (see Proposition 3.15) we define the
mappings φ⊥⊥(x) and φ⊥(x) as the projections of φ(x) onto NM(x̄)∩∆(σ)⊥⊥ and NM(x̄)∩∆(σ)⊥

respectively. Thus, (3.36) becomes

ψ(x) = x+ φ⊥⊥(x) + φ⊥(x). (3.40)

Splitting each term in both sides of Equation (3.40) in view of the canonical split defined in (3.23),
we obtain (

ψF (x)
ψM (x)

)
=

(
xF

xM

)
+

(
φF
⊥⊥(x)
φM
⊥⊥(x)

)
+

(
φF
⊥(x)

φM
⊥ (x)

)
.
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We look at the second line of this vector equation. Since

φ⊥⊥(x) ∈ NM(x̄) ∩∆(σ)⊥⊥ and φ⊥(x) ∈ NM(x̄) ∩∆(σ)⊥

we deduce from (3.30) and (3.31) that

φM
⊥⊥(x) ∈ [∆(σM )Rn−κ∗ ]⊥⊥ and φM

⊥ (x) ∈ [∆(σM )Rn−κ∗ ]⊥.

Since x ∈ x̄ + TM(x̄) and ψ(x) ∈ M we deduce from (3.18) and (3.19) that xM , ψM (x) ∈
[∆(σM )Rn−κ∗ ]⊥⊥ (recall that σM ∼ σM

∗ ), yielding φM
⊥ (x) ∈ [∆(σM )Rn−κ∗ ]⊥⊥ and thus φM

⊥ (x) = 0.
In addition, by Theorem 3.34 we have φF

⊥(x) = 0. Thus, φ⊥(x) = 0, which completes the proof of
(3.37).

We now show local invariance. Choose any permutation σ′ % σ. Since φ(x) ∈ ∆(σ)⊥⊥, it
follows that σ′φ(x) = φ(x). Thus,

σ′ψ(x) = σ′x+ σ′φ(x) = σ′x+ φ(x). (3.41)

Since M∩ B(x̄, δ) is locally symmetric, we have σ′ψ(x) ∈ M ∩ B(x̄, δ). Thus, there exists x◦ ∈
(x̄+ TM(x̄)) ∩B(x̄, δ) such that

σ′ψ(x) = ψ(x◦) = x◦ + φ(x◦). (3.42)

Combining (3.41) with (3.42) we get

x◦ − σ′x = φ(x)− φ(x◦).

The left-hand side is an element of TM(x̄), by Lemma 3.11, while the right-hand side is in NM(x̄).
Thus, x◦ = σ′x and φ(x) = φ(x◦), showing the local symmetry of φ which implies (3.38).

4 Spectral manifolds

We have now enough material on locally symmetric manifolds to tackle the smoothness of
spectral sets associated to them. Before continuing the developments, we present the particular
case whenM is (a relatively open subset of) a stratum ∆(σ). In this case, basic algebraic arguments
allow to conclude directly.

Example 4.1 (Lift of stratum ∆(σ)). We develop here the case when M is the connected com-
ponent of ∆(σ) which intersects Rn

≥. More precisely, we consider σ ∈ Σn, x̄ ∈ ∆(σ) ∩ Rn
≥ and

δ > 0, and we assume
M = ∆(σ) ∩B(x̄, δ) .

In this case, we show directly that the spectral set

λ−1(M) =
⋃

x∈M
On.Diag(x)

is an analytic (fiber) manifold using basic arguments exposed in Subsection 3.1. We stated therein
that the orbit On

Diag(x) is a submanifold of Sn with dimension∑
1≤i<j≤κ+m

|Ii||Ij |
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where P (x) = {I1, . . . , Iκ+m}. The key is to observe that, in this example, for any x ∈M we have

On
Diag(x) = On

Diag(x̄) ' O|I1| × · · · ×O|Im+κ|

and P (x) = P (σ) (thus also σ∗ = σ). Then all the orbits On.Diag(x) are manifolds diffeomorphic
to On/On

Diag(x̄) (fibers), whence of the same dimension. We deduce that λ−1(M) is a submanifold
of Sn diffeomorphic to the direct product M×

(
On/On

Diag(x̄)

)
, with dimension

dimλ−1(M) = d+
∑

1≤i<j≤κ+m

|Ii||Ij | . (4.1)

The proof is complete.

The proof of the general situation (that is, M arbitrary locally symmetric manifold) is a gener-
alization of the above arguments, albeit a nontrivial one. The strategy is more precisely explained
in Section 4.3. Before this, in Subsection 4.1 we introduce the block-diagonal decomposition of Sn,
and then we show in Section 4.2 that, in the special case σ∗ = idn, locally symmetric manifolds lift
through this decomposition.

4.1 Split of Sn induced by an ordered partition

In this section, we introduce a notion of split of the space of symmetric matrices, associated to
an ordered partition. We use later the canonical split associated to the partition induced by the
characteristic permutation σ∗ of the manifold.

Definition 4.2 (Ordered partition). Given a partition P = {I1, . . . , Im} of Nn we say that P is
ordered if for any 1 ≤ i < j ≤ m the smallest element in Ii is (strictly) smaller than the smallest
element in Ij . We use parenthesis P = (I1, . . . , Im) to indicate that the sets I1, . . . , Im in the
partition P are ordered. For example, the partition {{4}, {3, 2}, {1, 5}} of N5 gives the ordered
partition ({1, 5}, {3, 2}, {4}).

Now we consider the following linear spaces, defined as direct products

Sn
σ := S|I1| × · · · × S|Im| and On

σ := O|I1| × · · · ×O|Im|, (4.2)

for the given ordered partition P (σ) = (I1, . . . , Im). We denote by Xσ = X1 × · · · ×Xm ∈ Sn
σ an

element of Sn
σ, where Xi ∈ S|Ii|. We can interpret Xσ ∈ Sn

σ as the n×n block-diagonal matrix with
the blocks X1, . . . , Xm on the diagonal. This is formalized by the linear embedding

i :

{
Sn

σ −→ Sn

Xσ 7−→ X = Diag(X1, . . . , Xm).
(4.3)

The product of two elements Aσ and Bσ of Sn
σ is defined component-wise in the natural way.

Clearly, we have Diag(Xσ) := Diag(i(Xσ)). For any Xσ = X1 × · · · ×Xm ∈ Sn
σ, we introduce

λσ(Xσ) := λ(X1)× · · · × λ(Xm) ∈ Rn.

Recall that λ(X) ∈ Rn is the ordered vector of eigenvalues of X ∈ Sn. Note the difference between
λσ(Xσ) and λ(i(Xσ)): the coordinates of the vector λσ(Xσ) are ordered within each block while
those of λ(i(Xσ)) are ordered globally. Nonetheless they coincide in the following case.

Lemma 4.3. Assume λσ(X̄σ) ∈ ∆(σ) ∩Rn
≥. If Xσ is close to X̄σ, then λ(i(Xσ)) = λσ(Xσ).
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Proof. The assumption λσ(X̄σ) ∈ ∆(σ) ∩Rn
≥ yields, for 1 ≤ ` ≤ m− 1,

λmin(X̄`) > λmax(X̄`+1).

The continuity of the eigenvalues implies that for Xσ close to X̄σ, λmin(X`) > λmax(X`+1). Since
by construction λσ(Xσ) is ordered within each block, we get that λσ(Xσ) is ordered globally and
thus equal to λ(i(Xσ)).

This permits to differentiate easily functions defined as a composition with λσ.

Lemma 4.4. Assume λσ(X̄σ) ∈ ∆(σ)∩Rn
≥. If f : Rn → Rn is locally symmetric around λσ(X̄σ),

that is
f(σ′x) = f(x) for all σ′ ∈ S%(σ),

then f ◦ λσ is C1 around X̄σ, provided f is C1 around λσ(X̄σ). Moreover, the Jacobian of f ◦ λσ

at X̄σ applied to Hσ ∈ Sn
σ is

J(f ◦ λσ)(X̄σ)[Hσ] = J(f ◦ λ)(i(X̄σ))[i(Hσ)].

Proof. Lemma 4.3 gives that around X̄σ, we have f ◦ λσ = f ◦ λ ◦ i. Apply Theorem 3.2 to all of
its components, we get that the function f ◦ λσ is C1. The expression of the Jacobian follows from
the chain rule.

Let us come back now to the locally symmetric manifold M. We fix a point x̄ ∈ M ∩ Rn
≥,

and a permutation σ ∈ Σn such that x̄ ∈ ∆(σ). We also consider σ∗ be the characteristic per-
mutation of M (see Subsection 3.4). By (3.18), we have σ ≺∼ σ∗ or σ ∼ σ∗, and thus the
(F,M)-decomposition can be applied to σ, i.e. σ = σF ◦σM (recall Section 3.5). Consider now the
ordered partitions of σF and σM

P (σF ) = (I1, . . . , Iκ) and P (σM ) = (Iκ+1, . . . , Iκ+m) = P (σM
∗ ), (4.4)

where κ (resp. m) stands for the cardinality of the partition P (σF ) (resp. P (σM )). Recalling the
definitions of P (σ∗), m∗ and κ∗ (see respectively (3.22), (3.20) and (3.21)), we observe that κ ≤ κ∗,
m = m∗ by Proposition 3.32, as well as the equalities∣∣ ∪κ

i=1 Ii
∣∣ = ∣∣ ∪κ∗

i=1 Ii
∣∣ = κ∗ and (Iκ+1, . . . , Iκ+m) = (I∗κ∗+1, . . . , I

∗
κ∗+m∗). (4.5)

The main result of this subsection (forthcoming Proposition 4.6) is about the spaces Sκ∗
σF and Sn−κ∗

σM

defined by (4.2) for σF and σM respectively. Before going any further, let us make more precise a
point about notation. Recall from Example 3.30 that two vectors xF ∈ Rκ∗ and xM ∈ Rn−κ∗ give
rise to

• the usual direct product xF × xM that corresponds to the ordered pair (xF , xM ) considered
as a vector in Rn,

• the canonical product xF ⊗xM which intertwines the vectors xF and xM into a vector of Rn.
The canonical product depends on σ∗, while the direct product does not.

We now recall a general result quoted from Example 3.98 of [1].

Lemma 4.5. Let Ȳ ∈ Sn have eigenvalues

λ1(Ȳ ) ≥ · · · ≥ λk−1(Ȳ ) > λk(Ȳ ) = · · · = λk+r−1(Ȳ ) > λk+r(Ȳ ) ≥ · · · ≥ λn(Ȳ ).

Then, there exist an open neighborhood W ⊂ Sn of Ȳ and an analytic map Θ: W → Sr such that
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(i) for all Y ∈W , we have {λk(Y ), . . . , λk+r−1(Y )} = {λ1(Θ(Y )), . . . , λr(Θ(Y ))},

(ii) the Jacobian of Θ has full rank at Ȳ .

With the help of the previous lemma, we obtain the following result, used later in Theorem 4.16.

Proposition 4.6 (Local canonical split of Sn induced by σ∗). With the notation of this subsection,
there exist an open neighborhood W ⊂ Sn of X̄ ∈ λ−1(x̄) and two analytic maps

ΘF : W → Sκ∗
σF and ΘM : W → Sn−κ∗

σM ,

such that

(i) λ(X) = λσF (ΘF (X))⊗ λσM (ΘM (X)) for all X ∈W ;

(ii) the Jacobians of the analytic maps ΘF and ΘM have full ranks at X̄.

Proof. We are going to apply Lemma 4.5 for each block (so (κ+m) times). To have the right order,
we start by renumbering the blocks Ii: since the blocks in the ordered partitions (4.4) are made of
consecutive numbers (by Lemma 3.27 —recall x̄ ∈M∩Rn

≥), there exists a permutation τ ∈ Σκ+m,
such that for all 1 ≤ `1 < `2 ≤ κ+m

i ∈ Iτ(`1), j ∈ Iτ(`2) =⇒ i < j (in other words λi(X̄) > λj(X̄)).

The permutation τ describes how the canonical product intertwines the blocks of the vectors on the
right-hand side of (i). So we apply Lemma 4.5 for all ` = 1, . . . , κ+m to get open neighborhoods
W` ⊂ Sn of X̄ and analytic maps with Jacobians having full rank

Θτ(`) : W` → S|Iτ(`)|.

Set W =
⋂κ+m

`=1 W` and put the F -pieces and the M -pieces together, that is, define

ΘF := Θ1 × · · · ×Θκ and ΘM := Θκ+1 × · · · ×Θκ+m,

restricting the Θ` to W . We observe that the above functions satisfy the desired properties.

4.2 The lift-up into Sn
σ in the case σ∗ = idn

In this section, we consider the case when κ∗ = n (that is σ∗ = idn, or again ΣM = {idn}). Let
x̄ and σ such that x̄ ∈M∩∆(σ); we have obviously σF = σ (see Proposition 3.31). The important
property in this case is the simplification given by Theorem 3.34 which yields

NM(x̄) ⊆ ∆(σ)⊥⊥. (4.6)

The goal here is to establish that the set λ−1
σ (M) is a submanifold of Sn

σ, and to calculate its
dimension. This is an intermediate step in our way to prove that λ−1(M) is a submanifold of Sn

(in the general case). This also enables us to grind our strategy: the succession of arguments will
be similar for the general case.

From (4.6), we can exhibit easily a locally symmetric equation of M. We first recall from (3.6)
and (3.7) the definitions of π̄T (x) and π̄N (x) respectively, as well as the definition of φ by (3.34).
Consider the ball B(x̄, δ) satisfying Assumption 3.35, and define the function

φ̄ :

{
B(x̄, δ) ⊂ Rn −→ NM(x̄) ⊂ Rn

x 7−→ x̄+ φ(π̄T (x))− π̄N (x).
(4.7)
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Lemma 4.7 (Existence of a locally symmetric local equation in the case σ∗ = idn). The function φ̄
defined by (4.7) is a local equation of M around x̄ ∈M∩∆(σ) that is locally symmetric, in other
words

φ̄(σ′x) = σ′φ̄(x) = φ̄(x) for all σ′ ∈ S%(σ).

Proof. For x ∈ B(x̄, δ) we have that

φ̄(x) = 0 ⇐⇒ π̄N (x) = x̄+ φ(π̄T (x)) ⇐⇒ x = π̄T (x) + φ(π̄T (x)) ⇐⇒ x ∈M∩B(x̄, δ),

using successively (3.8) and (3.35). The Jacobian mapping Jφ̄(x̄) of φ̄ at x̄ is a linear map from Rn

to NM(x̄), which, when applied to any direction h, yields

Jφ̄(x)[h] = Jφ(π̄T (x))[πT (h)]− πN (h).

Clearly, for h ∈ NM(x̄) we have Jφ̄(x̄)[h] = −h showing that the Jacobian in onto and hence of
full rank. Thus, φ̄ is a local equation of M around x̄. Finally, Corollary 3.13(i) and Lemma 3.36
show that for any σ′ % σ and any x ∈ B(x̄, δ) we have (φ ◦ π̄T )(σ′x) = (φ ◦ π̄T )(x). Thus, in view
of Corollary 3.13(ii) and Lemma 3.36 again, for σ′ ∈ S%(σ), we have

(σ′)−1φ̄(σ′x) = (σ′)−1(x̄+ (φ ◦ π̄T )(x)− σ′π̄N (x)) = φ̄(x).

Since φ̄(x) ∈ NM(x̄) ⊂ ∆(σ)⊥⊥, we obtain the second equality σ′φ̄(x) = φ̄(x).

Let us consider the map

Φ̄:

{
λ−1

σ (B(x̄, δ)) ⊂ Sn
σ −→ NM(x̄) ⊂ Rn

Xσ 7−→ (φ̄ ◦ λσ)(Xσ) = x̄+ φ(π̄T (λσ(Xσ)))− π̄N (λσ(Xσ)).
(4.8)

Since φ̄ is a local equation of M around x̄, we deduce for Xσ ∈ Sn
σ

Xσ ∈ λ−1
σ (M∩B(x̄, δ)) ⇐⇒ λσ(Xσ) ∈M∩B(x̄, δ) ⇐⇒ Φ̄(Xσ) = 0. (4.9)

Thus, it suffices to show that Φ̄ is differentiable and that its Jacobian JΦ̄ has full rank at X̄σ ∈
λ−1

σ (x̄). This is the role of forthcoming Theorem 4.9. We shall first need the following lemma.

Lemma 4.8. The function π̄N ◦ λσ is differentiable at X̄σ ∈ λ−1
σ (x̄). Moreover, for any direction

Hσ ∈ Sn
σ we have

J(π̄N ◦ λσ)(X̄σ)[Hσ] = πN (diag (ŪσHŪ
>
σ )),

where Ūσ ∈ On
σ is such that X̄σ = Ū>σ

(
Diag λσ(X̄σ)

)
Ūσ, recalling the embedding (4.3).

Proof. The fact that x̄ ∈ ∆(σ)⊥⊥ together with (4.6) gives that x̄+NM(x̄) ⊆ ∆(σ)⊥⊥. Therefore
π̄N (x) ∈ ∆(σ)⊥⊥, and consequently

σ′π̄N (x) = π̄N (x) for all σ′ ∈ S%(σ).

Together with Corollary 3.13, this gives that π̄N is locally symmetric around x̄. So we can apply
Lemma 4.4 to get that π̄N ◦ λσ is differentiable at X̄σ.

We also get the expression of its Jacobian at X̄σ applied to the direction Hσ ∈ Sn
σ by applying

Theorem 3.2 on each component:

J(π̄N ◦ λσ)(X̄σ)[Hσ] = J(π̄N ◦ λ)(i(X̄σ))[i(Hσ)]
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= J(π̄N (λ(i(X̄σ)))[diag(i(Ūσ)i(Hσ)i(Ūσ))>]

= πN (diag (ŪσHσŪ
>
σ )),

the last equality following by definition of the objects in Sn
σ. This finishes the proof.

Theorem 4.9 (Local equation of λ−1
σ (M) in the case σ∗ = idn). Let M be a locally symmetric

C2 submanifold of Rn around x̄ ∈M∩Rn
≥ ∩∆(σ) of dimension d. If σ∗ = idn, then λ−1

σ (M) is a
C2 submanifold of Sn

σ around X̄σ ∈ λ−1
σ (x̄), whose codimension in Sn

σ is n− d.

Proof. By Corollary 3.13 and Lemma 3.36, the function φ ◦ π̄T is locally symmetric. Therefore
Lemma 4.4 yields that φ ◦ π̄T ◦ λσ is differentiable at X̄σ. Combining this with Lemma 4.8, we
deduce that the function Φ̄ defined in (4.8) is differentiable at X̄σ.

Let us now show that the Jacobian JΦ̄ has full rank at X̄σ. The gradient of the i-th coordinate
function (φi ◦ π̄T ) at x̄ applied to the direction h is

∇(φi ◦ π̄T )(x̄)[h] = ∇φi(π̄T (x̄))[πT (h)].

Thus for i ∈ {1, . . . , n}, Lemma 4.4 and Theorem 3.2 give that the gradient of φi ◦ π̄T ◦ λσ at X̄σ

in the direction Hσ ∈ Sn
σ is

∇(φi ◦ π̄T ◦ λσ)(X̄σ)[Hσ] = ∇φi(π̄T (λσ(X̄σ)))[πT (diag (ŪσHσŪ
>
σ ))].

Combining this with Lemma 4.8 we obtain the following expression for the derivative of the map Φ̄
at X̄σ in the direction Hσ ∈ Sn

σ:

JΦ̄(X̄σ)[Hσ] = Jφ(π̄T (λσ(X̄σ)))[πT (diag (ŪσHσŪ
>
σ ))]− πN (diag (ŪσHσŪ

>
σ )).

Notice that for any h ∈ NM(x̄) defining Hσ := Ū>σ (Diag h)Ūσ ∈ Sn
σ we have

JΦ̄(X̄σ)[Hσ] = −h,

which shows that the linear map JΦ̄(X̄) : Sn
σ → NM(x̄) is onto and thus has full rank. In view

of (4.9), Φ̄ is a local equation of M around X̄σ.
Recall that d = dim (M) = dim (TM(x̄)) and dim (NM(x̄)) = n − d. Since φ̄ and Φ̄ are local

equations of M and λ−1
σ (M) respectively, the manifolds have the same codimension n− d.

Remark 4.10. Theorem 4.9 remains true if C2 is replaced everywhere by C∞ or Cω, see The-
orem 3.2. Note however that the statement only asserts that λ−1

σ (M) is a submanifold of Sn
σ.

Nothing is claimed about λ−1(M), even in this particular case. Nonetheless, this important inter-
mediate result will be a basic ingredient in the proof of the main result (see proof of Lemma 4.15).

4.3 Reduction the ambient space in the general case

We now return to the general case and recall the situation in Assumption 3.35. The active
space is thus reduced, as follows:

M∩B(x̄, δ) ⊂
(
x̄+ TM(x̄)⊕

(
NM(x̄) ∩∆(σ)⊥⊥

) )
∩B(x̄, δ),
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where (3.35) and (3.37) have been used. To define a local equation of M in the appropriate space,
we introduced the reduced tangent and normal spaces.

N red
M (x̄) := NM(x̄) ∩∆(σ)⊥⊥ and T red

M (x̄) := TM(x̄) ∩∆(σ)⊥. (4.10)

Note that theses spaces are invariant under permutations σ′ % σ (see Lemma 3.11 and Lemma 2.5).
For later use when calculating the dimension of spectral manifolds, we denote the dimension of
N red
M (x̄) by

nred := dimN red
M (x̄). (4.11)

Let us now define the set on which the local equation of λ−1(M) will be defined. Let x̄ = x̄F⊗x̄M

be the canonical splitting of x̄ in Rn. Naturally B(x̄F , δ1) denotes the open ball in Rκ∗ centered
at x̄F with radius δ1, and B(x̄M , δ2) denotes the open ball in Rn−κ∗ centered at x̄M with radius δ2.
Define the following rectangular neighborhood of x̄

B(x̄, δ1, δ2) := B(x̄F , δ1)⊗B(x̄M , δ2).

Choose δ1, δ2 > 0 so that B(x̄, δ1, δ2) ⊂ B(x̄, δ). By Assumption 3.35 and Proposition 3.32, the
ball B(x̄F , δ1) intersects only strata ∆(σ′) ⊂ Rκ∗ for σ′ % σF , and similarly for the ball B(x̄M , δ2).
The key element in our next development is going to be the set

D :=
(
x̄+ TM(x̄)⊕N red

M (x̄)
)
∩ B(x̄, δ1, δ2), (4.12)

which plays the role of a new ambient space (affine subspace of Rn containing all information
about M). We gather properties of D in the next proposition.

Proposition 4.11 (Properties of D). In the situation above, there holds

x̄+ TM(x̄)⊕N red
M (x̄) = T red

M (x̄)⊕∆(σ)⊥⊥. (4.13)

Hence, we can reformulate

D =
(
T red
M (x̄)⊕∆(σ)⊥⊥

)
∩ B(x̄, δ1, δ2).

This set is relatively open in the affine space

Rd+nred
:= x̄+ TM(x̄)⊕N red

M (x̄).

Moreover, the set D is invariant under all permutations σ′ % σ, and hence a locally symmetric set.

Proof. The above formula follows directly by combining (4.10), (3.10) and Corollary 3.16. Indeed,
we obtain successively

x̄+TM(x̄)⊕N red
M (x̄)

= x̄+ TM(x̄)⊕
(
NM(x̄) ∩∆(σ)⊥⊥

)
= x̄+ (TM(x̄) ∩∆(σ)⊥)⊕ (TM(x̄) ∩∆(σ)⊥⊥)⊕ (NM(x̄) ∩∆(σ)⊥⊥)

= x̄+
(
TM(x̄) ∩∆(σ)⊥

)
⊕∆(σ)⊥⊥

= x̄+ T red
M (x̄)⊕∆(σ)⊥⊥,

which yields (4.13) since x̄ ∈ ∆(σ)⊥⊥ and 0 ∈ T red
M (x̄). The reformulation of D is then obvious.

Note that by Lemma 2.5, Lemma 3.11, and Proposition 3.32, the set D is invariant under permuta-
tions σ′ % σ, and hence is locally invariant.
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Let us introduce the projections onto the reduced spaces

π̄red
N (x) = Proj x̄+Nred

M (x̄)(x) and πred
N (x) = Proj Nred

M (x̄)(x).

Note that there holds π̄red
N (x) = πred

N (x) + π̄red
N (0) and π̄T (x) = πT (x) + π̄T (0) as well as

x̄+ x = π̄T (x) + π̄red
N (x) for all x ∈ x̄+ TM(x̄)⊕N red

M (x̄). (4.14)

Similarly to (4.7), we define the map

φ̄ :

{
D ⊂ Rd+nred −→ N red

M (x̄) ⊂ Rd+nred

x 7−→ x̄+ φ(π̄T (x))− π̄red
N (x),

(4.15)

and we show that this function is a locally symmetric local equation of M. This is the content of
the following result, analogous to Lemma 4.7.

Theorem 4.12 (Existence of a locally symmetric local equation). The map φ̄ is well-defined and
locally symmetric, and provides a local equation of M around x̄.

Proof. The set D is chosen so that φ is well-defined. Thanks to Lemma 3.36 and the fact that
x̄− π̄red

N (x) ∈ N red
M (x̄), the range of φ̄(x) is in N red

M (x̄). The remainder of the proof follows closely
the proof of Lemma 4.7. For all x ∈ D, in view of (4.14), (3.35) and Lemma 3.36 we obtain

φ̄(x) = 0 ⇐⇒ π̄red
N (x) = x̄+ φ(π̄T (x)) ⇐⇒ x = π̄T (x) + φ(π̄T (x)) ⇐⇒ x ∈M∩B(x̄, δ).

The Jacobian of φ̄ at x is a linear map from TM(x̄) ⊕ N red
M (x̄) to N red

M (x̄), which applied to any
direction h yields

Jφ̄(x)[h] = Jφ(π̄T (x))[πT (h)]− πred
N (h).

Clearly, for h ∈ N red
M (x̄) we have Jφ̄(x̄)[h] = −h showing that the Jacobian Jφ̄ at x̄ is onto and

has a full rank. Thus, φ̄ is a local equation of M around x̄. Finally Corollary 3.13, Lemma 3.36,
and Lemma 2.7 show that for any σ′ % σ and any x ∈ D we have (φ ◦ π̄T )(σ′x) = (φ ◦ π̄T )(x). This
yields the local symmetry of φ̄.

We introduce the spectral function Φ̄ associated with φ̄

Φ̄ :

{
λ−1(D) ⊂ Sn −→ N red

M (x̄) ⊂ Rd+nred

X 7−→ (φ̄ ◦ λ)(X) = x̄+ φ(π̄T (λ(X)))− π̄red
N (λ(X)).

(4.16)

By construction, we get that the zeros of Φ̄ characterize M, since

X ∈ λ−1(M∩B(x̄, δ)) ⇐⇒ λ(X) ∈M∩B(x̄, δ) ⇐⇒ Φ̄(X) = 0. (4.17)

At this stage, let us compare (4.16) with (4.8) and the particular treatment in Subsection 4.2. In
Subsection 4.2 we had NM(x̄) ⊆ ∆(σ)⊥⊥ yielding N red

M (x̄) = NM(x̄) and thus D = B(x̄, δ1, δ2),
an open subset of Rn. Unfortunately, in the general case, there is an extra difficulty, which
stems from the fact that D is not open in Rn, but only relatively open with respect to the affine
subspace Rd+nred

, and consequently the function Φ̄ is defined in a subset of Sn of lower dimension
(namely, λ−1(D)). For this reason, we shall successively establish the following properties.

1. Transfer of local approximation. We show that the set λ−1(D) is an analytic manifold locally
around X̄ ∈ λ−1(x̄) and we calculate its dimension;

2. Transfer of local equation. We show that the function Φ̄ defined on λ−1(D) is differentiable
and its differential at X̄ (a linear map on the tangent space of λ−1(D)) has a full rank.
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4.4 Transfer of the local approximation

The goal of this section is to show that locally around X̄ ∈ λ−1(x̄) the set λ−1(D) is an analytic
submanifold of Sn. We do this in two steps: the first step consists of showing that both the
M -part and the F -part of D give rise to two analytic submanifolds in the spaces Sn−κ∗

σM and Sκ∗
σF

correspondingly, while the second step shows that intertwining the two parts preserves this property
in the space Sn. Throughout this section, we consider that Assumption 3.35 is in force (and recall
(4.4) and (4.5)).

Lemma 4.13 (Decomposition of D). Applying the (F,M)-decomposition to the affine manifold D,
we get

D =
{
xF ⊗ xM : xF ∈ DF , xM ∈ DM

}
,

where DF and DM are affine manifolds defined by:

DM := [∆(σM )Rn−κ∗ ] ∩B(x̄M , δ2), and

DF :=
(
[T red
M (x̄)]F ⊕ [∆(σF )Rκ∗ ]

)
∩ B(x̄F , δ1),

where [T red
M (x̄)]F is the F -part of the reduced space T red

M (x̄). The sets DM and DF are locally
symmetric. Moreover, the dimension of DM is n− κ∗, while the dimension of DF is

dimDF = d+ nred −m.

Proof. We deduce from the definition of T red
M (x̄) in (4.10) and by (3.32) that for every x =

xF ⊗ xM ∈ T red
M (x̄) we have xM = 0. According to (3.30)

∆(σ)⊥⊥ = [∆(σF )Rκ∗ ]⊥⊥ ⊗ [∆(σM )Rn−κ∗ ]⊥⊥,

which combined with Proposition 4.11 yields

D =
{
xF ⊗ xM : xF ∈

(
[T red
M (x̄)]F ⊕ [∆(σF )Rκ∗ ]⊥⊥

)
∩B(x̄F , δ1),

xM ∈ [∆(σM )Rn−κ∗ ]⊥⊥ ∩B(x̄M , δ2)
}
.

Now, in view of Assumption 3.35, the closure of the affine space (that is the sign ‘⊥⊥’) is not needed
in the above representation; in other terms:(

[T red
M (x̄)]F ⊕ [∆(σF )Rκ∗ ]⊥⊥

)
∩B(x̄F , δ1) =

(
[T red
M (x̄)]F ⊕ [∆(σF )Rκ∗ ]

)
∩B(x̄F , δ1)

[∆(σM )Rn−κ∗ ]⊥⊥ ∩B(x̄M , δ2) = [∆(σM )Rn−κ∗ ] ∩B(x̄M , δ2).

Hence, we get the desired expressions for DF and DM . By Proposition 4.11, the set D is invariant
under all permutations in S%(σ). Thus, by Proposition 3.32, being the F - and M -parts of D, the
sets DF and DM invariant with respect to the permutations in S%(σF ) and S%(σM ), respectively.
We now compute the dimension of DF . Observe that Proposition 4.11 yields

x̄+ TM(x̄) ⊕ N red
M (x̄) = T red

M (x̄) ⊕ ∆(σ)⊥⊥

=
(
[T red
M (x̄)]F ⊕ [∆(σF )Rκ∗ ]⊥⊥

)
⊗
(
{0}n−κ∗ ⊕ [∆(σM )Rn−κ∗ ]⊥⊥

)
.

Thus, using (4.13), (4.11) and the fact that m = dim
(
[∆(σM )Rn−κ∗ ]⊥⊥

)
, we get

d + nred = dimDF + m,

which ends the proof.

In the following two lemmas, we show that the two parts of D lift up to two manifolds λ−1
σM

(
DM

)
and λ−1

σF

(
DF
)
. Let us start with the easier case concerning the M -part.
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Lemma 4.14 (The analytic manifold SM ). Let x̄ ∈ M ∩ ∆(σ) and let σ = σF ◦ σM be the
(F,M)-decomposition of σ. Then, the set

SM := λ−1
σM

(
DM

)
⊂ Sn−κ∗

σM

is an analytic submanifold of Sn−κ∗
σM around X̄M

σM ∈ λ−1
σM (x̄M ), whose codimension is

m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)
2

−m.

Proof. According to the partition P (σM ) = {Iκ+1, . . . , Iκ+m}, a vector in [∆(σM )Rn−κ∗ ] has equal
coordinates within each block Iκ+i. Each block lifts to a multiple of the identity matrix (in the
appropriate space). Since the lifting λ−1

σM is block-wise, SM is then a direct product of multiples of
identity matrices, and thus an analytic submanifold of Sn−κ∗

σM with dimension m.

Let us now deal with the F -part.

Lemma 4.15 (The analytic manifold SF ). Let x̄ ∈ M ∩∆(σ), and σ = σF ◦ σM be the (F,M)-
decomposition of σ. Then the set

SF := λ−1
σF (DF ) ⊂ Sκ∗

σF

is an analytic submanifold around X̄F
σF ∈ λ−1

σF (x̄F ) of codimension κ∗ − (d+ nred −m).

Proof. Recall that by Lemma 4.13, DF is a locally symmetric, affine submanifold of Rκ∗ . Our
first aim here is to show that

NDF (x̄F ) ⊂ [∆(σF )Rκ∗ ]⊥⊥. (4.18)

(Compare (4.18) with (4.6).) To this end, fix ε > 0 and let ω ∈ TM(x̄) ∩ B(0, ε) be a vector with
the properties stated in Lemma 3.33. By (3.10), there is a unique representation ω = ω⊥+ω⊥⊥ for
some ω⊥ ∈ T red

M (x̄) and ω⊥⊥ ∈ TM(x̄)∩∆(σ)⊥⊥. Taking the F -trace of w, we have ωF = ωF
⊥+ωF

⊥⊥
with

ωF
⊥ ∈ [T red

M (x̄)]F

and ωF
⊥⊥ ∈ [∆(σF )Rκ∗ ]⊥⊥. Let P (σF ) = {I1, . . . , Iκ} be the partition determined by σF . Note that

ωF
⊥ = ωF −ωF

⊥⊥. Since subvector ωF
Ii

has distinct coordinates, while (ωF
⊥⊥)Ii has equal coordinates

(definition of [∆(σF )Rκ∗ ]⊥⊥), we conclude that the subvector (ωF
⊥)Ii has distinct coordinates, for

all i ∈ Nm.
Let us now consider DF . Fix any xF ∈ [∆(σF )Rκ∗ ] ∩ B(x̄F , δ1). Taking ω close enough to 0

ensures that ωF
⊥ is close enough to 0 so that all of the coordinates of the vector ωF

⊥+xF are distinct,
and moreover ωF

⊥ + xF ∈ DF . All that shows

DF ∩ [∆(idκ∗)Rκ∗ ] 6= ∅.

Thus, applying Corollary 3.25 (for n = κ∗), we see that the characteristic permutation of the affine
manifold is DF is idκ∗ entailing a trivial (F,M)-decomposition of Rκ∗ . The inclusion (4.18) now
follows from Theorem 3.34 applied to Rκ∗ .

To conclude, we apply Theorem 4.9 and Remark 4.10 to DF to get that the set SF is an analytic
submanifold of Sκ∗

σF of codimension κ∗ − (d+ nred −m) there.
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Theorem 4.16 (λ−1(D) is a manifold in Sn). Under Assumption 3.35, consider the set D defined
by (4.12). Then the set λ−1(D) is an analytic submanifold of Sn around X̄ ∈ λ−1(x̄), with dimen-
sion

dimλ−1(D) =
n(n+ 1)

2
+ d+ nred − κ∗ −

m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)
2

. (4.19)

Proof. Consider the (F,M)-decomposition of Rn induced by σ∗, and apply Proposition 4.6 to
get a neighborhood W of X̄ in Sn and analytic maps ΘF and ΘM such that

λ(X) = λσF (ΘF (X))⊗ λσF (ΘM (X)) for all X ∈W. (4.20)

Set X̄F
σF := ΘF (X̄) ∈ Sκ∗

σF and X̄M
σM := ΘM (X̄) ∈ Sn−κ∗

σM . Since x̄ = λ(X̄) = λσF (X̄F
σF )⊗λσM (X̄M

σM ),
by the fact that the canonical product is well-defined, we deduce x̄F = λσF (X̄F

σF ) and x̄M =
λσM (X̄M

σM ), concluding that X̄F
σF ∈ SF and X̄M

σM ∈ SM (recall Lemma 4.15 and Lemma 4.14).
Consider the respective codimensions

s1 := co-dimSF = κ∗ − (d+ nred −m), and (4.21)

s2 := co-dimSM =
m∑

i=1

|Iκ+i|(|Iκ+i|+ 1)
2

−m. (4.22)

Since the maps ΘF and ΘM have Jacobians of full rank at X̄, they are open around it. By shrinking
W if necessary, we may assume there exist analytic maps

ΨF : ΘF (W ) → Rs1 and ΨM : ΘM (W ) → Rs2 ,

with Jacobians having full rank at X̄F
σF and X̄M

σM respectively, such that

ΨF (XF
σF ) = 0 ⇔ XF

σF ∈ SF ∩ΘF (W ) and ΨM (XM
σM ) = 0 ⇔ XM

σM ∈ SM ∩ΘM (W ).

Together, the two conditions above are equivalent to

XF
σF ×XM

σM ∈ ΘF (W )×ΘM (W ) and λσF (XF
σF )⊗ λσM (XM

σM ) ∈ D.

We now define a local equation for λ−1(D) around X̄ as follows:

Ψ:

{
W ⊂ Sn −→ Rs1 × Rs2

X 7−→ (ΨF ◦ΘF )(X)× (ΨM ◦ΘM )(X).

Indeed, using (4.20), for all X ∈W we have

Ψ(X) = 0 ⇐⇒ λ(X) = λσF (ΘF (X))⊗ λσM (ΘM (X)) ∈ D ⇐⇒ X ∈ λ−1(D).

The fact that the Jacobian of Ψ has full rank at X̄ follows from the chain rule and the fact that all the
Jacobians JΘF (X̄), JΘM (X̄), JΨF (X̄F

σF ), and JΨM (X̄M
σM ) are of full rank. Thus, Ψ is an analytic

local equation of λ−1(D) around X̄, which yields that λ−1(D) is a submanifold Sn around X̄. We
compute its dimension as follows

dimλ−1(D) = dimSn −
(
co-dimSF + co-dimSM

)
=
n(n+ 1)

2
+ d+ nred − κ∗ −

m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)
2

,

where (4.21) and (4.22) were used.

Theorem 4.16 is an important intermediate result for the forthcoming Section 4.5, which contains
the final step of the proof. Nonetheless, in the following particular case, Theorem 4.16 allows us to
conclude directly.
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Example 4.17. Fix a permutation σ∗ ∈ Σn with the property described in Theorem 3.28. In view
of Remark 3.26, it is instructive to consider the particular case when

M =
⋃

σ ∼ σ∗
σ ≺∼ σ∗

∆(σ).

Clearly, M is a locally symmetric manifold with characteristic permutation σ∗ and relatively open
in ∆(σ∗)⊥⊥. Moreover, for any x̄ ∈ M∩∆(σ), where σ ∼ σ∗ or σ ≺∼ σ∗, we have N red

M (x̄) = {0},
that is nred = 0. This means that the affine manifoldsM andD coincide locally around x̄, see (4.12).
In this case Theorem 4.16 shows directly that λ−1(M) is a manifold in Sn with dimension given
by (4.19). At first glance, it appears that the dimension depends on the particular choice of x̄. But
since σ ∼ σ∗ or σ ≺∼ σ∗ we recall that we have d = κ∗ +m∗, m = m∗, and |Iκ+i| = |I∗κ∗+i| for all
i = 1, . . . ,m. Thus, the dimension depends only on σ∗. In fact, one can verify that (4.19) becomes

dimλ−1(M) = d+
(
κ∗
2

)
+ κ∗(n− κ∗) +

∑
1≤i<j≤m∗

|I∗κ∗+i||I∗κ∗+j |

= d+
∑

1≤i<j≤κ∗+m∗

|I∗i ||I∗j |.

Thus, according to (4.1), we have

dimλ−1(M) = dimλ−1(∆(σ∗)),

and that is a particular case of the forthcoming general formula (4.25).

In the situation of Example 4.17 the manifold M has a trivial reduced normal space. The
following remark sheds more light on this aspect.

Remark 4.18 (Case of trivial reduced normal space (N red
M (x̄) = {0})). Let M be a locally sym-

metric manifold, with characteristic permutation σ∗ and let x̄ ∈ M ∩∆(σ). Then, by (3.35) and
(3.37), it can be easily seen that

N red
M (x̄) = {0} ⇐⇒ M∩B(x̄, δ) = (x̄+ TM(x̄)) ∩B(x̄, δ), for some δ > 0.

Applying Corollary 3.24 to the left-hand side of the last equality, we see on the right-hand side
that (x̄+ TM(x̄))∩B(x̄, δ)∩∆(σ∗) is dense in (x̄+ TM(x̄))∩B(x̄, δ). Inclusions (3.18) and (3.19)
show that (x̄+ TM(x̄)) ⊂ ∆(σ∗)⊥⊥, thus we obtain:

N red
M (x̄) = {0} ⇐⇒ M∩B(x̄, δ) = ∆(σ∗)⊥⊥ ∩B(x̄, δ), for some δ > 0.

There are two possibilities with respect to the position of x̄:

• If x̄ ∈ ∆(σ∗), then we can shrink δ > 0 to get M∩ B(x̄, δ) = ∆(σ∗) ∩ B(x̄, δ). This is the
situation, for instance, in Example 4.1.

• If x̄ /∈ ∆(σ∗), then x̄ /∈ ∆(σ) for some σ ≺∼ σ∗. This is the situation, for instance, in
Example 4.17.
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4.5 Transfer of local equations, proof of the main result

This section contains the last step of our argument: we show that (4.16) is indeed a local
equation of M around X̄ ∈ λ−1(x̄).

Lemma 4.19 (The Jacobian of DΦ̄(X̄)). The map Φ̄ defined in (4.16) is of class C2 at X̄.
Denoting by

DΦ̄(X̄) : Tλ−1(D)(X̄) −→ N red
M (x̄)

the differential of Φ̄ at X̄, we have for any direction H ∈ Tλ−1(D)(X̄):

DΦ̄(X̄) [H] = Dφ (π̄T (λ(X̄))) [πT (diag(Ū H Ū>))] − πred
N (diag(Ū H Ū>)), (4.23)

where Ū ∈ On is such that X̄ = Ū>(Diag λ(X̄))Ū .

Proof. We deduce from Corollary 3.13 and Lemma 3.36 that for any σ′ % σ and x ∈ D we have

(φ ◦ π̄T )(σ′x) = (φ ◦ π̄T )(x). (4.24)

In addition, the gradient of the i-th coordinate function (φi ◦ π̄T )(x) at x̄, applied to any direction
h ∈ TD(x̄) = T red

M (x̄)⊕∆(σ)⊥⊥, see (4.13), yields

∇ (φi ◦ π̄T )(x̄)[h] = ∇φi(π̄T (x̄))[πT (h)].

Thus, by Theorem 3.2, we obtain the following expression for the gradient at X̄ of the function
X 7→ (φi ◦ π̄T )(λ(X)) applied to the direction H ∈ Tλ−1(D)(X̄)

∇ (φi ◦ π̄T ◦ λ)(X̄)[H] = ∇φi (π̄T (λ(X̄))) [πT (diag (ŪHŪ>))], for i ∈ Nn,

where Ū ∈ On is such that X̄ = Ū>(Diag λ(X̄))Ū . Since N red
M (x̄) ⊆ ∆(σ)⊥⊥, we observe that the

proof of Lemma 4.8 can be readily adapted to find the Jacobian of π̄red
N ◦ λ at X̄. We thus obtain

(4.23).

We now show that the differential of Φ̄ at X̄ is of full rank. We accomplish this without actually
computing the tangent space of the manifold λ−1(D) at X̄. Instead we show that the tangent space
is sufficiently rich to guarantee surjectivity.

Lemma 4.20 (Surjectivity of DΦ̄(X̄)). The linear mapping (the differential of Φ̄ at X̄)

DΦ̄(X̄) : Tλ−1(D)(X̄) −→ N red
M (x̄)

is onto, and thus has full rank.

Proof. Let Ū ∈ On be such that X̄ = Ū>(Diag λ(X̄)) Ū . The tangent space of On at Ū is

{ŪA : A is an n× n skew-symmetric matrix}.

Thus, for any n × n skew symmetric matrix A there exists an analytic curve t 7→ U(t) ∈ On such
that

U(0) = Ū and U̇(0) :=
d

dt
U(0) = ŪA.

Fix now any vector h ∈ N red
M (x̄). Consider the curve t 7→ U(t)>(Diag (x̄+ th))U(t). For all values

of t close to zero, this curve lies in λ−1(D) because x̄+ th lies in D. Introduce the vector xt made
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of the entries of x̄+ th reordered in decreasing way. Since the space N red
M (x̄) is invariant under all

permutations σ′ % σ we see that xt lies in x̄ + N red
M (x̄), for t close to zero. The derivative of this

curve at t = 0 (i.e. a tangent vector in Tλ−1(D)(X̄)) is

H := U̇(0)
>
(Diag x̄)U(0) + U(0)>(Diag h)U(0) + U(0)>(Diag x̄)U̇(0)

= −AŪ>(Diag x̄)Ū + Ū>(Diag h)Ū + Ū>(Diag x̄)ŪA,

where we use that A> = −A. Substituting the above expression of H into (4.23), and using the
fact that Ū Ū> = Ū>Ū = I and that ŪAŪ>(Diag x̄) and (Diag x̄)ŪAU> have the same diagonal we
obtain

DΦ̄(X̄)[H] = −h.

This shows that DΦ̄(X̄) is surjective onto N red
M (x̄), which completes the proof.

Theorem 4.21 (Main result: λ−1(M) is a C2 manifold in Sn). Suppose M is a locally symmetric
C2 submanifold of Rn of dimension d. Then λ−1(M) is a C2 submanifold of Sn of dimension

dimλ−1(M) = d +
∑

1≤i<j≤κ∗+m∗

| I∗i | | I∗j |, (4.25)

where σ∗ is the characteristic permutation of M and P (σ∗) = {I∗1 , . . . , I∗κ∗+m∗}.

Proof. Fix any x̄ ∈ M ∩Rn
≥ and X̄ ∈ λ−1(x̄) and consider the spectral function Φ̄ introduced

in (4.16). Equation (4.17) shows that Φ̄ is a local equation of M. Lemmas 4.19 and 4.20 prove that
Φ̄ is a C2 local equation of λ−1(M) around X̄. Thus λ−1(M) is a C2 submanifold of Sn around X̄.
Moreover, the dimension of λ−1(M) is

dimλ−1(M) = dimλ−1(D) − dim(N red
M (x̄)).

Using (4.10) and Theorem 4.16, we get

dimλ−1(M) = d+
n(n+ 1)

2
− κ∗ −

m∑
i=1

|Iκ+i|(|Iκ+i|+ 1)
2

.

Recall that σM = σM
∗ (Proposition 3.31), so that |Iκ+i| = |I∗κ∗+i| for all i = 1, . . . ,m, that m = m∗,

and that
∑m∗

i=1 |I∗κ∗+i| = n− κ∗. Substituting this in the above equality, we obtain

dimλ−1(M) = d+
n2

2
− κ∗

2
−

m∗∑
i=1

|I∗κ∗+i|2

2

= d+
n2

2
− κ∗

2
− 1

2

( m∗∑
i=1

|I∗κ∗+i|
)2

+
∑

1≤i<j≤m∗

|I∗κ∗+i||I∗κ∗+j |

= d+
κ∗(κ∗ − 1)

2
+ κ∗(n− κ∗) +

∑
1≤i<j≤m∗

|I∗κ∗+i||I∗κ∗+j |

= d+
∑

1≤i<j≤κ∗+m∗

|I∗i | |I∗j |,

the last equality coming from the fact that, by definition (3.22), all the sets in {I∗1 , . . . , I∗κ∗} have
size one.
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Notice that the dimension (4.25) of λ−1(M) depends only on the dimension of the underlying
manifold M and its characteristic permutation σ∗. This is not the case with the dimension (4.19)
of λ−1(D) which also depends on the active permutation σ (by nred, κ and m).

Remark 4.22 (Variants of the main result). Theorem 4.21 has been announced and proved for
the C2 case. Let us now see what can be said in other cases:

(i) [C∞ and Cω ] The statement of Theorem 4.21 holds true in these two cases. In particular,
we have: λ−1(M) is a C∞ (respectively, analytic) submanifold of Sn, whenever M is a C∞

(respectively, analytic) locally symmetric submanifold of Rn. The proof is identical.

(ii) [Ck case, k /∈ {1, 2,∞, ω} ] It is not known whether or not the transfer principle of The-
orem 3.2 remains true for the general Ck case, for k /∈ {1, 2,∞}. If such a statement is true,
then Theorem 4.21 will also hold for the Ck case (k ≥ 2) with the same proof (as in (ii)).

(iii) [C1 case ] The C1 case seems somehow compromised by the use of Lemma 3.17 (Determina-
tion of isometries). Indeed, the aforementioned lemma uses the intrinsic Riemannian structure
of M (which demands an at least C2 differentiable structure for M). Thus, our method does
not apply for this case.

Example 4.23 (Matrices of constant rank in Sn). Let r ∈ {0, 1, . . . , n} and let us consider the
subspace Sn

r of Sn consisting of all symmetric matrices of constant rank r. We show here that this
set is a spectral manifold of dimension r(2n− r + 1)/2 around a matrix X̄ ∈ Sn

r .
Let x̄ ∈ λ(X̄) ∈ Rn

≥ and set I = {i ∈ Nn : x̄i = 0}. Let δ = min{|x̄i| : i ∈ Nn \ I}
and denote by N the set of vectors of Rn with exactly r non-zero entries. Observe that the set
M = N ∩B(x̄, δ/2) is a linear submanifold of Rn of dimension r around x̄, with the (n− r)-local
equations xi = 0 for i ∈ I there. It is also locally symmetric with characteristic permutation
σ∗ = (i1, . . . , ir) for ik ∈ I (k = 1, . . . , r). Thus, by Theorem 4.21, λ−1(M) is a submanifold of Sn

around X̄ with dimension

dimλ−1(M) = r +
r(r − 1)

2
+ r(n− r) =

r(2n− r + 1)
2

.

We retrieve in particular easily the dimensions of the particular cases r = 1 (rank-one matrices)
and r = n (invertible matrices).

Remark 4.24 (The case κ∗ ∈ {0, 1}). If M is a connected, submanifold of Rn of dimension d,
such that κ∗ ∈ {0, 1}, then M⊂ ∆(σ∗). The same arguments as in Example 4.1 allow to conclude
that λ−1(M) is a spectral manifold of dimension given by (4.1).

5 Appendix: A few side lemmas

This appendix section contains a few results that were not central to the development, but are
necessary for the proof of the main theorem.

Let y1, . . . , yn be any reals and let y = (y1, . . . , yn). Consider the (n! + 1) × (n + 1) matrix Y
with first row (1, . . . , 1, 0) ∈ Rn+1 and consecutive rows equal to (σy, 1) for each σ ∈ Σn. For
example, when n = 2 the matrix Y is 3× 3 and equal to 1 1 0

y1 y2 1
y2 y1 1

 .
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Lemma 5.1 (Matrix of full rank). If for n ≥ 2 the numbers y1, . . . , yn are not all equal, then the
matrix Y defined above has full rank.

Proof. Suppose that (x, α) ∈ Rn × R is in the null space of Y . Then, y>Px + α = 0 for
all permutation matrices P and x1 + · · · + xn = 0. Hence, y>(P − Q)x = 0 for all permutation
matrices P and Q. Without loss of generality, y1 6= y2. For any distinct indices r and s, choose P
and Q so that (P −Q)x = (xr − xs, xs − xr, 0, . . . , 0). This shows that xs = xr. Since r and s are
arbitrary, we deduce x = 0 and hence α = 0, as required.

The following result is used in the proof of Theorem 3.34.

Corollary 5.2. Let x ∈ ∆(σ)⊥ for some σ ∈ Σn and let P (σ) = {I1, . . . , Im}. Let y ∈ Rn be such
that each subvector yIi, i ∈ Nm, has distinct coordinates. Then, the existence of a constant α ∈ R
such that

〈x, σ′y〉 = α for all σ′ % σ, (5.1)

is equivalent to the fact that x = 0 (and thus α = 0).

Proof. The sufficiency part is obvious, so we need only prove the necessity. We prove the claim
by induction on m. If m = 1 then x ∈ ∆(σ)⊥ is equivalent to x1 + · · · + xn = 0. This together
with (5.1) implies that the extended vector x̄ := (x,−α) is a solution to the linear system Y x̄ = 0,
where Y is defined above. By Lemma 5.1, Y has full column rank, which implies that x = 0 and
α = 0. Suppose now that the result is true for m− 1, we prove it for m. For each σ′ % σ we have
the natural disjoint decomposition σ′ = σ′1 ◦ · · · ◦ σ′m, where each permutation σ′j ∈ Σ|Ij | is the
restriction of σ′ to the set Ij , j ∈ Nm. Thus,

〈x, σ′y〉 = 〈xI1 , σ
′
1yI1〉+ · · ·+ 〈xIm , σ

′
myIm〉.

Fix a permutation σ′1 ∈ Σ|I1|. Since

〈xI2 , σ
′
2yI2〉+ · · ·+ 〈xIm , σ

′
myIm〉 = α− 〈xI1 , σ

′
1yI1〉

for any σ′j ∈ Σ|Ij |, j = 2, . . . ,m, we conclude by the induction hypothesis that xI2 = · · · = xIm = 0
and that α− 〈xI1 , σ

′
1yI1〉 = 0. But the permutation σ′1 was arbitrary, so we obtain

〈xI1 , σ
′
1yI1〉 = α for all σ′1 ∈ Σ|I1|.

This, by the considerations in the base case of the induction, shows that xI1 = 0 and α = 0.
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[5] Hiriart-Urruty, J.-B. and Ye, D., Sensitivity analysis of all eigenvalues of a symmetric
matrix, Numer. Math. 70 (1992), 45–72.

[6] Kato, T., A Short Introduction to Perturbation Theory for Linear Operators, (Springer-
Verlag, Berlin, 1976).

[7] Kobayashi, S. and Nomizu, K., Foundations of Differential Geometry. Vol I, (John Wiley
& Sons, New York-London, 1963).

[8] Lewis, A.S., Derivatives of spectral functions, Math. Oper. Res. 21 (1996), 576–588.

[9] Lewis, A.S., Nonsmooth analysis of eigenvalues, Math. Programming 84 (1999), 1–24.

[10] Lewis, A.S. and Sendov, H., Twice differentiable spectral functions, SIAM J. Matrix Anal.
Appl. 23 (2001), 368–386.

[11] Orsi, R., Helmke, U. and Moore, J., A Newton-like method for solving rank constrained
linear matrix inequalities, Automatica 42 (2006), 1875–1882.

[12] Poliquin, R.A. and Rockafellar, R.T., Prox-regular functions in variational analysis.
Trans. Amer. Math. Soc. 348 (1996) 1805–1838.

[13] Sendov, H., The higher-order derivatives of spectral functions, Linear Algebra Appl. 424
(2007), 240–281.

[14] Tropp, J.A., Dhillon, I.S., Heath, R.W. and Strohmer, T., Designing structured tight
frames via in alternating projection method, IEEE Trans. on Inf. Theory 51 (2005), 188–209.

[15] Tsing, N.-K., Fan, M.K.H. and Verriest, E.I., On analyticity of functions involving
eigenvalues, Linear Algebra Appl. 207 (1994), 159–180.

————————————————–

Aris DANIILIDIS
Departament de Matemàtiques, C1/308
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