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Abstract

It has been observed that in many optimization problems, nonsmooth objective functions often appear
smooth on naturally arising manifolds. This has led to the development of optimization algorithms which
attempt to exploit this smoothness. Many of these algorithms follow the same two step pattern: first
predict a direction of decrease, and second make a correction step to return to the manifold. In this
paper we examine some of the theoretical components used in such predictor-corrector methods. We
begin our examination under the minimal assumption that the restriction of the function to the manifold
is smooth. At the second stage, we add the condition of “partial smoothness” relative to the manifold.
Finally, we examine the case when the function is both “prox-regular” and partly smooth. In this final
setting we show that the proximal point mapping can be used to return to the manifold, and argue that
returning in this manner is preferable to returning via the projection mapping. We finish by developing
sufficient conditions for quadratic convergence of predictor-corrector methods using a proximal point
correction step.

1 Introduction

In considering the minimization of a nonsmooth function it has often been noted that, in general, the
minimum will occur at a point of nondifferentiability. It has also been noted however, that nonsmoothness
seldom occurs in a random manner, but instead often has an underlining structure which can be exploited
in optimization [BM88], [Bur90], [Wri93], [MS99], [MS02], [Sha03], [Lew03], [HL04], [Har04b]. This
underlining structure often appears to take the form of a manifold along which the function appears
smooth, but away from which the function appears nonsmooth. If the minima lie on such a manifold we
refer to this manifold as the active manifold. Many researchers have developed algorithms which force
iterates onto the active manifold to ensure rapid convergence [BM88], [Bur90], [AKK91], [MM05], [MS05].

These algorithms, which can be called predictor-corrector methods, follow a common two-step form.
Supposing that we have an iterate which lies on the active manifold, we use the smoothness of the
function along with manifold to take a prediction step in a direction tangent to the active manifold.
Since, in general, this operation results in a point outside the manifold, it is followed by a corrector
step with returns the iterate to the active manifold. Algorithms of this form can be found in [LOS00],
[Ous99], [MS05]. As explained in [MM05], these methods can be seen as concrete versions of the intrinsic
Riemannian Newton method (see [Gab82] and [Smi94] among others).
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For predictor-corrector algorithms to work efficiently, it is essential to understand the tools which the
algorithm uses. During the predictor step, these algorithms use the smoothness of the function along the
active manifold to predict directions of decrease. This leads to the need for gradient and Hessian like
structures for the function restricted to the active manifold. The primary focus of this work is to explore
an extrinsic method for defining the so-called Riemann gradient. This extrinsic definition can be found
in Section 2, which considers the Riemann gradient under the most basic assumption for its existence:
that the function be smooth along a manifold. In this setting the Riemann gradient is shown to be a well
defined object, and several formulas for its computation are developed.

In order to provide more structure to the function, in Section 3, we introduce the notion of “partly
smooth” function. Originally developed in [Lew03], partly smooth functions are functions which are not
just smooth along a manifold, but also satisfy some regularity and sharpness conditions (see Definition 14).
These conditions create a stronger relationship between the function and its Riemann gradient. Of
particular interest is how this relationship behaves under the assumption that the Riemann gradient lies
within the relative interior of the subdifferential. In Subsection 3.3 we show that if this assumption holds
at a point, then it must hold locally, and the direction of steepest descent along the manifold is the
direction of steepest descent in the entire space.

As a secondary focus for this work, we consider the correction step of predictor-corrector methods.
In examining the correction step, it is clear that returning to the manifold can be accomplished in many
different ways. Theoretically one could simply project the prediction step onto the manifold [MM05].
This approach however has problems in practice, for either the active manifold or the projection onto it
is not known. Recent work by Mifflin and Sagastizábal has suggested that another manner of returning
to the active manifold is by the use of proximal points [MS02]. In [MS02] they show that under certain
conditions the proximal point mapping identifies the active manifold for a convex function. This result
has been extended to prox-regular functions in [MS04].

Prox-regularity, originally studied in [PR96a], is a generalization of convexity which provides the
necessary structure for the proximal point mapping to be single valued [PR96b]. In Section 4 we consider
the Riemann gradient and the proximal point mapping for prox-regular partly smooth functions. We
begin by providing an alternate proof for the theorems of [MS04], which yields a slightly stronger result.
Our approach not only shows that proximal points identify active manifolds, but describes the smoothness
of the proximal point mapping in this setting. Subsection 4.2 then provides a theoretical comparison of
the proximal point method and the projection method for returning to the active manifold. We show that,
in general, the proximal point method takes a larger step and causes greater function decrease than the
projection method, thus reinforcing the idea that the proximal point method is a more effective manner
to return to the active manifold. The study finishes with the statement of the quadratic convergence of
the conceptual form of the proximal algorithm of [MS05].

1.1 Notation and preliminaries

We begin with outlining the notation used throughout this work.

(a) Notions from differential and Riemannian geometry A subset M of Rn is said to be a p-
dimensional Ck submanifold of Rn around x ∈M (1 ≤ k ≤ +∞) if there exists local parameterization of
M around x, that is, a Ck function ϕ : Rp → Rn such that ϕ realizes a local homeomorphism between a
neighborhood of 0 ∈ Rp and a neighborhood of x ∈M and the derivative of ϕ at ϕ−1(x) = 0 is injective.
A p-dimensional Ck submanifold M of Rn can alternatively be defined via a local equation, that is, a Ck

function Φ : Rn → Rn−p with a surjective derivative at x̄ ∈M, that satisfies for all x close enough to x̄

x ∈M ⇐⇒ Φ(x) = 0.

To lighten notation, henceforth we shall write “Ck manifold” instead of “p-dimensional Ck submanifold
of Rn”. We shall also omit the “Ck” whenever the level of smoothness of a manifold or a function is
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irrelevant. In this case, we shall say “smooth” to express that a function is of class Ck where k will be
sufficiently large for our purposes.

Given a point x ∈M, we denote respectively by TM(x) and NM(x) the tangent space (of dimension p)
and the normal space (of dimension n− p) of M at x, defined through either a local parameterization ϕ
or a local equation Φ as follows:

TM(x)= Im Dϕ(0) = kerDΦ(x) and NM(x)= kerDϕ(0)∗= ImDΦ(x)∗ (1)

(where A∗ denotes the adjoint operator of A). For a Ck manifold M, the tangent bundle TM is the
Ck−1 manifold of R2n of dimension 2p defined by

TM =
⋃

x∈M
(x, TM(x)).

Let us point out two local parameterizations that we will consider in this paper. Given a Ck manifold
M (k ≥ 2) and x ∈M, the function defined for u ∈ TM(x) (sufficiently small) by

ϕproj
x (u) = PM(x + u) = argmin {δM(y) + ‖x + u− y‖2}

is the projection parameterization of M at x [MM05, Lemma 4.8], where PM denotes the projection onto
M and δM denotes the indicator function for the manifold M. Similarly, the function defined for small
u ∈ TM(x) by

ϕtan
x (u) = argmin {δM(y) + δNM(x)(x + u− y)}

is the tangential parameterization of M at x (see [Ous99, Theorem 3.4] or [MM05, Corollary 2.3]). Both
parameterizations are locally well defined (as single-valued functions). Let us also note that the local
inverse of ϕtan

x is the projection onto TM(x), that is,

z = ϕtan
x (u) ⇐⇒ u = PTM(x)(z − x). (2)

The natural embedding of a submanifold M into Rn permits to define a Riemannian structure and to
introduce geodesics on M (see [dC92] for instance). Roughly speaking, a geodesic is locally the shortest
path between two points on M. We denote by γ(x, u, t) the value at t ∈ R of the geodesic starting at
x ∈ M with velocity u ∈ TM(x) (it is uniquely defined – see [dC92]). For instance, if the manifold is
the whole Euclidean space M = Rn, then the geodesics are the straight lines traversed with a constant
speed: γ(x, u, t) = x + tu in this case.

(b) Notions from variational analysis We mainly follow the notation of [RW98]. We define the
regular (or Fréchet) subdifferential of f at x̄ as

∂̂f(x̄) = {p ∈ Rn : f(x) ≥ f(x̄) + 〈p, x− x̄〉+ o(‖x− x̄‖)},

and the limiting subdifferential as

∂f(x̄) = lim sup
x→x̄,f(x)→f(x̄)

∂̂f(x), (3)

where lim sup is the set upper limit in the sense of Kuratowski.
If the function f is (Clarke) regular (or subdifferential regular) at x̄, then the regular subdifferential

at x̄ coincides with the limiting subdifferential (and with the Clarke subdifferential, see [RW98]). For
instance, the smooth functions, the convex functions and the indicator functions of manifolds are regular
functions [RW98, Chapter 6.8].

For any set S we define the affine span, aff S, to be the smallest affine space which contains S. The
relative interior ri S of S, is then the interior of S relative to the space described by its affine span.

3



A lower semicontinuous function f : Rn → R, is called prox-bounded if for some point x and some
parameter λ > 0 the function f(y) + 1

2λ‖x − y‖2 is bounded below. In this case we define the proximal
mapping x 7→ Pλ(x) by

Pλ(x) = argmin
y∈Rn

{
f(y) +

1
2λ
‖x− y‖2

}
. (4)

The points of the set Pλ(x) are called proximal points of f at x, and the parameter λ the prox-parameter.
It is known (see [RW98], for example) that for any convex function (with any λ > 0), or for any “prox-
regular” function (with λ sufficiently small, cf. Definition 26), one has Pλ(x) = x if and only if x is a
critical point of f . Henceforth when dealing with prox-bounded functions we shall always assume that
the prox-parameter is sufficiently small for the proximal mapping to be well defined.

2 Riemannian gradient

Throughout this paper we will repeatedly make the assumption that a function f has a smooth restriction
on a submanifold M near a point x̄ ∈ M (or, simply worded, that f is smooth along M near x̄). This
smoothness can be defined intrinsically by expressing M using its local parameterizations ([dC92]).
Taking advantage of the natural embedding of M into Rn, it can also be characterized by the existence
of a smooth representation f̃ : Rn → R, that is a smooth function f̃ such that f̃(x) = f(x) for all points
on M. From the outlook of this work, we find it advantageous to use the extrinsic approach.

2.1 Examples

To provide some insight into the abundance and interest of functions smooth along a manifold, we begin
by providing some simple examples of nonsmooth functions which have smooth restrictions on a given
manifold.

Example 1 (Finite Max Functions). Suppose the function f is defined as the maximum of a finite
number of Ck functions:

f(x) = max
i=1,2,...,N

fi(x), fi ∈ Ck for i = 1, 2, . . . , N.

For each point x̄ we define its active set by A(x̄) = {i : f(x̄) = fi(x̄)}. Then assuming that the active
gradients {∇fi(x̄) : i ∈ A(x̄)} are linearly independent, it follows that f is Ck along the manifold

M = {x : A(x) = A(x̄)},
that is, the restriction of f to M is Ck. Moreover, for any i ∈ A(x̄), the function fi is a Ck representation
of f on M.

Example 1 shows us that functions which have smooth representations exist in abundance. Many
researchers have examined methods of extending the idea of finite max functions to an even broader class
of functions. For example, [Roc82] consider the class of “lower-C2” functions, in which an infinite index
set is permitted provided a certain constraint qualification condition is preserved. In [MS00a], [MS00b],
the idea of a “primal-dual gradient” structure (pdg structures) is developed. Originally these structures
were a method of defining functions along a manifold via finite max functions in a manner which ensures
the possibility to reconstruct subgradient information. However, the definition has expanded over research
to include the ability to define the functions along a manifold in other manners.

Our second example explains some of the interest in functions with smooth representations. Indeed,
it shows that the highly studied maximum eigenvalue function has a smooth representation. Moreover,
compositions of the maximum eigenvalue function with a smooth function, also have a smooth repre-
sentation provided a constraint qualification is satisfied. The example is well-known, and details can be
found in [Arn71], [Ous99] amongst others.
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Example 2 (λmax ◦ F). Let Sm the space of symmetric m× m matrices, and r a positive integer. We
denote the eigenvalues of a symmetric matrix X ∈ Sm by λ1(X) ≥ λ2(X) ≥ . . . ≥ λm(X). Then the set
of symmetric matrices whose maximum eigenvalue has multiplicity r,

Mr = {X ∈ Sm, λ1(X) = · · · = λr(X) > λr+1(X)},

is a C∞ submanifold of Sm. Moreover, for any matrix X̄ ∈ Mr the maximum eigenvalue function λmax

has a C∞ representation on Mr near X̄ which is

λ̃(X) =
1
r
(λ1(X) + · · ·+ λr(X)).

Furthermore, consider the composition f = λmax ◦F , where the function F : Rn → Sm is Ck. At any
point x̄ where the transversality condition

NMr(F(x))
⋂

kerDF(x)∗ = {0} (5)

holds, the set Nr = F−1(Mr) is a submanifold of Rn around x̄, and f̃ = λ̃ ◦ F is a Ck representation of
λmax ◦ F on Nr near x.

In our final example we explore the idea of “VU -decompositions” and “fast tracks” [LOS00], [MS99],
[MS00b], [MS02], (amongst others). The example demonstrates a method of determining potential mani-
folds along which a convex function might have a smooth representation. Although somewhat theoretical
in appearance, the ideas have lead to a new “VU -proximal point algorithm” which has shown some success
in practice. This algorithm is discussed in more detail in Section 4.1 of this work.

Example 3 (VU-theory and fast tracks). Consider a convex function f and a point x̄. In examining
the subdifferential ∂f(x̄), one might notice that the “nonsmoothness” of f at x̄ is essentially contained
in directions parallel to the subdifferential. This led to the idea of VU-decomposition at x̄, in which the
space Rn is decomposed into two orthogonal subspaces

V(x̄) = par ∂f(x̄) and U(x̄) = V(x̄)⊥,

where par ∂f(x̄) denotes the linear space parallel to the affine space generated by the subdifferential
∂f(x̄). These spaces represent the directions from x̄ for which f behaves nonsmoothly (V) and smoothly
(U) (see [LOS00]). The goal is then to find a smooth function which describes f in the directions of U .

Following the notation of [MS00b], [MS05], we consider V̄ and Ū to be basis of V(x̄) and U(x̄).
Suppose dimV(x̄) = n− p, thus dimU(x̄) = p. For any g ∈ ri ∂f(x̄) the U-Lagrangian is defined by

LU ( · , g) :




Rp −→ R

u 7−→ min
v∈Rn−p

{f(x̄ + Ūu + V̄ v)− g>V̄ v} (6)

We denote by W (u, g) the points where the minimum is attained. If for all g ∈ ri ∂f(x̄) there exists a C2

selection v : Rp → Rn−p such that v(u) ∈ W (u, g) and if the U-Lagrangian LU (u, g) is C2 with respect
to u, then M̄ = {x̄ + (Ū u + V̄ v(u)) : u ∈ Rp} is a manifold and f is C2 on M̄ [MS00b]. Such a function
(u 7→ v(u)) is called a fast track of f and studied extensively in [MS00b] and [MS02].
Note that ri ∂f(x̄) is nonempty whenever ∂f(x̄) 6= ∅. Moreover, if f is nonsmooth, then ri ∂f(x̄) cannot
be a singleton (in fact ri ∂f(x̄) is a singleton if, and only if, ri ∂f(x̄) = {g} = ∂f(x̄), which implies
V(x̄) = 0 and p = n), containing thus an infinity of points.

It is worth noting here that the research on pdg structures (mentioned earlier) sprang largely from
the search for concrete examples of functions which contain fast tracks.
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2.2 The Riemannian gradient of f

Given a function f which has a smooth representation on the manifold M (near the point x̄), it is natural
to ask how the gradient of the representation f̃ relates to the original function f . To do so, we require
the following proposition from [Lew03, Proposition 2.2].

Proposition 4 (Normal space and subdifferential). Let M be a submanifold of Rn and f : Rn → R
be a function with a smooth restriction on M, and x be a point of M. Then

NM(x) ⊃ ∂̂f(x)−∇f̃(x). (7)

It is easily seen that (7) yields in particular

NM(x) ⊃ par ∂̂f(x). (8)

Let us now provide two examples related to Proposition 4. The first example shows that the inclusions
in Equation (7) can be strict, while the second shows that the regular subdifferential ∂̂f(x) cannot be
replaced by the limiting subdifferential ∂f(x). In Section 3, we will introduce partial smoothness, which
provides enough structure to avoid these complications.

Example 5 (Strict inclusion). Let f be a smooth function on Rn (thus f = f̃) and M be a strict
vector subspace of Rn. The subspace parallel to ∂̂f(x) = {∇f(x)} is the singleton {0}, while NM(x) is
the nontrivial subspace normal to M. Thus the inclusion in (7) can be strict.

Example 6 (Necessity of regular subdifferential). Consider the function f : R2 → R defined by

f(x, y) =





−|y|, if y ≤ 0

min
{

(4/π) arctan(y/x),
√

x2 + y2
}

, if x ≥ y > 0

min
{√

(max{x, 0})2 + y2,
√

2
}

, if y ≥ max{x, 0}

Notice f is continuous and that it is constant (equal to 0) along the manifold M = R × {0}. However,
for the limiting subdifferential ∂f(0, 0) (cf. (3)) we have

par ∂f(0, 0) 6⊂ {0} × R = NM(0, 0).

To see this, observe first that, for any k > 0 the function f is differentiable at (0,−1/k), with derivative
∇f(0,−1/k) = (0,−1). Thus (0,−1) ∈ ∂f(0, 0). Consider now the sequence (xk, yk) = 1

2k (cos 1
k , sin 1

k ),
for k ∈ N. The function f is also differentiable at (xk, yk), and as k → +∞ we get (xk, yk) → (0, 0) and

∇f(xk, yk) =

(
xk√

xk
2 + yk

2
,

yk√
xk

2 + yk
2

)
=

(
cos

1
k

, sin
1
k

)
−→ (1, 0).

Thus {(0,−1), (1, 0)} ∈ ∂f(0, 0) and therefore par ∂f(0, 0) 6⊂ {0} × R.

For a function f which is smooth along a manifold M, there is no reason to expect the representation
function f̃ to be unique. In the next proposition we see that for any vector g ∈ ∂̂f(x) + NM(x) a smooth
representation f̃ of f can be found satisfying ∇f̃(x) = g. Thus if either ∂̂f or NM is nontrivial, there are
an infinite number of distinct representation functions.
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Proposition 7 (Abundance of ∇f̃(x)). Let M be a smooth manifold, x̄ ∈ M and p ∈ NM(x̄).
Then there exists a smooth representation h of the null function on M near x̄ satisfying ∇h(x̄) = p.
Thus, if f : Rn → R is a function having a smooth representation on M near x̄ ∈ M, then for every
g ∈ ∂̂f(x̄) + NM(x̄), there exists a smooth representative f̃ of f on M near x̄ with ∇f̃(x̄) = g.

Proof. Let Φ : Rn → Rn−p be a local equation of the manifold M (of dimension p) around the point
x̄. Since DΦ(x̄) is surjective, the gradients of the components ϕi of Φ, {∇ϕi(x̄)}i, form a basis of
NM(x̄). Thus for every p ∈ NM(x̄), there exist {ai}i ⊂ R such that p =

∑n−p
i=1 ai∇ϕi(x̄). The function

h =
∑n−p

i=1 aiϕi is a smooth representation of the null function on M having the prescribed derivative.

To see the second part of the proof, consider any smooth representation f̃ of f on M near x̄. For a given
g ∈ ∂̂f(x̄) + NM(x̄), we have p = g − ∇f̃(x̄) ∈ NM(x̄), by Proposition 4. Applying the first part, we
obtain a smooth representation h of the null function on M with ∇h(x̄) = p. Thus f̃ + h is a smooth
representation of f on M with the desired derivative.

Even if the gradient of the representation function f̃ can take any value, it is still somewhat controlled
by the fact that f̃ agrees with the original function on the manifold. This means that in directions tangent
to the manifold ∇f̃ must behave like a subgradient of f . Indeed Proposition 4 yields that, given any
subgradient g ∈ ∂̂f(x̄), we have

〈∇f̃(x̄), u〉 = 〈g, u〉, for allu ∈ TM(x).

This leads to the key definition of this work.

Definition 8 (Riemannian gradient). Suppose f is smooth along the manifold M at the point x ∈M.
Let f̃ be any smooth representation of f on M near x. Then the Riemannian gradient of f at x relative
to M is defined by

∇Mf(x) = PTM(x)(∇f̃(x)).

Proposition 9. The Riemannian gradient of f at x does not depend on the smooth representation f̃ of
f at x.

Proof. Let f be smooth along M at the point x̄ ∈ M. Let f̃1 and f̃2 be two smooth representations of
f . Then f̃1 + δM = f̃2 + δM, where δM is the indicator function of M. By [RW98, Corollary 1.9] we
have for i = 1, 2

∂(f̃i + δM)(x) = ∇f̃i(x) + NM(x).

It follows
∇f̃1(x)−∇f̃2(x) ∈ NM(x),

that is, PTM(x)(∇f̃1(x)−∇f̃2(x)) = 0.

Remark 10. (i) intrinsic definition. Similar to the smoothness of f , the gradient of f along the
manifold M can either be defined intrinsicly, via a local parameterization of M, or extrinsicly, via a
local smooth representative f̃ . Despite the nonuniqueness of the representative function f̃ , this latter
definition will be more helpful for our purposes.

(ii) gradients in differential geometry. In differential geometry there is a conceptual difference
between tangent vectors and gradients of functions. Tangent vectors are (classes of equivalences of)
derivatives of curves passing through x (identify to TM(x)), while gradients of functions are one-forms
and belong to the co-tangent (or dual) space TM(x)∗. Using the natural identification between TM(x̄) and
TM(x̄)∗ allowed by the Riemannian structure, we indistinguishly mix up gradients and tangent vectors.

(iii) projected gradient. The Riemann gradient bares a strong relationship to the object commonly
referred to as the “projected gradient” (see [CM87] for example). The major difference is that the
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projected gradient is constructed when examining a smooth function over a constraint set, while the
Riemann gradient considers a function f with smooth restriction on some manifold M and a smooth
representation f̃ of f in the ambient space. By viewing the manifold as a constraint set, and by replacing
the objective function f by f̃ , the Riemannian gradient could be viewed as the projected gradient of the
representation function f̃ .

Let us give a simple argument showing the smoothness of ∇Mf in relation to the smoothness of f
and M.

Lemma 11 (Smoothness of ∇Mf). If the function f is Ck along the Ck-manifold M (k ≥ 1), then
the function x 7→ ∇Mf(x) is of class Ck−1 on M.

Proof. Since ∇f̃(·) is of class Ck−1, we just have to justify that x 7→ PTM(x) is of class Ck−1. Let x̄ ∈M,
and ϕ a Ck local parameterization of M around x̄. For x close to x̄, the columns of a matrix representing
Dϕ(ϕ−1(x)) form a basis of TM(x) which has a Ck−1 dependence on x. Using these basis to express
PTM(x), we get its desired smoothness, and the one of ∇Mf(·) follows.

Although we used an explicit representation to define the Riemannian gradient, the Riemannian
gradient is unique and intrinsically defined (Proposition 9). Let us also show that f̃ can be omitted when
defining ∇Mf in case that ∂̂f(x) 6= ∅.
Proposition 12 (Riemannian gradient and subdifferential). Suppose the function f is smooth
along the manifold M near x ∈M. If the regular subdifferential ∂̂f(x) is non-empty, then

∇Mf(x) = PTM(x)(∂̂f(x)).

Proof. Let f̃ be a representation of f so that

∇Mf(x̄) = PTM(x)(∇f̃(x̄)).

Inclusion (7) implies
PTM(x)(∂̂f(x)) ⊂ PTM(x)(∇f̃(x)) = {∇Mf(x)}.

Thus PTM(x)(∂̂f(x)) can be either empty or singleton. Since ∂̂f(x) 6= ∅ and the projection exists, the
proof is complete.

2.3 Algorithms using the smoothness along M
The smoothness of f along a manifold can be exploited to design optimization methods to solve

{
min f(x)
x ∈M

These methods follow a two-step process which resembles to a predictor-corrector process: the next iterate
is computed by

1. (Predictor) a step in the tangent space,

2. (Corrector) a step to regain the manifold M.

A very important method following this pattern is the Riemannian Newton method (see [Gab82],
[Smi94], [AES99], [DMP03] among others). To compute the predictor step, this method uses the Rie-
mannian gradient and also the so-called Riemannian Hessian that can be defined via geodesics as follows.
For (x, u) ∈ TM, the value of the Riemannian Hessian at x along (u, u) is set as

∇2
Mf(x)(u, u) =

d2

dt2
f(γ(x, u, t))

t=0

.

One iteration of the Riemannian Newton method is then
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1. compute the direction u = −[∇2
Mf(x)]−1∇Mf(x) in the tangent space,

2. compute the step x+ = γ(x, u, 1) on M.

If M = Rn, this appears to be exactly the classical Newton method: the next iterate is x+ =
γ(x, u, 1) = x+u with Newton direction u = −[∇f(x)]−1∇f(x) and step t = 1. The Riemannian Newton
method is shown to be quadratically convergent under classical assumptions (see references above). In
[MM05], this method is generalized in using the local parameterizations ϕtan and ϕproj to stay on the
manifold (corrector step). For instance, with the projection parameterization, the next iterate is computed
in processing

1. make a Newton step in the tangent space

x̃+ = x− [∇2
Mf(x)]−1∇Mf(x);

2. correct it in projecting onto M
x+ = PM(x̃+).

Introducing in an appropriate way the parameterization permits to emphasize that the U-Newton
methods developed in [LOS00] and [Ous99] follow the two-step process too. Since the two parameteri-
zations coincide with geodesics up to second-order, the quadratic convergence is also maintained for the
corresponding algorithms (see [MM05] for details).

We will see in Subsection 4.2 that the VU-proximal algorithm of [MS05] follow the same pattern
too, and that it is also quadratically convergent. For the moment, we just note that a step of the basic
proximal algorithm also follow this two-step process: usually expressed as “an implicit subgradient step”,
it can be interpreted here as an “implicit Riemannian gradient step”.

Proposition 13 (An interpretation of the proximal step). Let f be Clarke regular and smooth
along M near the point x ∈ M. If for a given prox-parameter λ > 0 there exists a proximal point
y ∈ Pλ(x) which belongs to M, then

(i) λ∇Mf(y) = PTM(y)(x− y), or equivalently

(ii) x = ϕtan
y (λ∇Mf(y)), which means that we recover x by computing the gradient step in the tangent

space followed by the correction step provided by ϕtan to stay on the manifold.

Proof. By definition, y ∈ Pλ(x) satisfies

0 ∈ ∂̂

(
f +

1
2λ
‖ · −x‖2

)
(y) = ∂̂f(y) +

1
λ

(y − x).

This equation follows from [RW98, Corollary 10.9] and the smoothness of y 7→ 1
2λ‖y− x‖2. Proposition 4

yields (x− y) ∈ λ∇f̃(y) + NM(y). Taking the projection onto TM(y) completes the proof of (i).
To get (ii), recall that PTM(y) is the inverse of the parameterization ϕtan

y (see (2)): we can write

x = ϕtan
y (PTM(y)(x− y))

and we use (i) to conclude.

In Section 4 we will see that under the additional assumptions of partial smoothness and prox-
regularity (Definition 14 and Definition 26 in this work) even stronger relationships between proximal
points and the Riemann gradient exist. For example, under those conditions, the converse of Proposition
13 also holds true (see Theorem 29).
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3 Riemann gradient and partial smoothness

3.1 Definition and examples

The notion of partly smooth functions is introduced in [Lew03]. This concept expresses a certain regularity
on the underlying smooth structure of a nonsmooth function.

Definition 14 (partial smoothness). A function f : Rn → R is called Ck-partly smooth relative to
a nonempty subset M⊂ Rn (k ∈ N ∪ {∞}) at a point x̄ ∈ M, if M is a Ck-manifold and the following
properties hold:

(i) smoothness: the restriction of f to M is a Ck-function;

(ii) regularity: f is Clarke regular with ∂f(y) 6= ∅ at all y ∈M near x̄;

(iii) sharpness: the affine span of ∂f(x̄) is a translate of NM(x̄);

(iv) subdifferential continuity: the set-valued map ∂f restricted to M is continuous near x̄.

If these conditions hold for all x̄ ∈M we say that f is partly smooth relative to M.

Examples of partly smooth functions are abundant in optimization. For example, finite max functions
of the style in Example 1 are partly smooth along the manifold defined therein [Lew03, Corollary 4.8].
In [Lew03, Example 3.6] it was shown that the maximal eigenvalue function (Example 2 of this work)
is partly smooth. Furthermore, [Har04b] and [MM05, Theorem 2.9] have independently shown that in
the convex case, the ideas of partial smoothness and “fast tracks” coincide exactly. The next example
clarifies this statement.

Example 15 (Fast tracks). Consider a convex function f and a point x̄. Suppose f admits a fast
track u 7→ v(u) (see definition and notation in Example 3). Then M̄ = {x̄ + (Ūu + V̄ v(u)) : u ∈ Rp} is
a manifold and f is partly smooth at x̄ relative to M̄. Conversely, if a convex function f is C2-partly
smooth at x̄ relative to a C2-manifold M and 0 ∈ ∂f(x̄), then f admits a fast track. Therefore the
U-Lagrangian LU (u, g) is C2 with respect to u (for any g ∈ ri ∂f(x̄)).

As mentioned, in Lewis’s original work on partial smoothness it is shown that the maximum eigenvalue
is partly smooth. By applying [Lew03, Theorem 4.2] to this fact, we see that the composition of the
maximum eigenvalue function with a smooth function is partly smooth.

Example 16 (Eigenvalue functions). Consider the composition of the maximum eigenvalue function
λmax with a function F smooth at any point x̄. It is remarkable that condition (5), ensuring that
Nr = F−1(Mr) is a manifold around x̄, also guarantees that λmax ◦ F is partly smooth at x̄ relative
to Nr.

Examples of functions which are not partly smooth at a given point are also easily constructed (see
[Har04a] or [Har04b] for example).

3.2 Expressions of the Riemannian gradient

We now turn our attention to determining the effect of partial smoothness on descriptions of the Riemann
gradient.

Proposition 17 (The gradient as projection of 0). Let the function f be partly smooth relative to
the manifold M at the point x̄. Then for any x ∈M near x̄

∇Mf(x) = PTM(x)(∂f(x)) = Paff ∂f(x)(0).

10



Proof. The first equality follows from Proposition 12 and condition (ii) of partial smoothness (which
yields ∂f(x) = ∂̂f(x) 6= ∅, for all x ∈ M). To prove the second equality, consider ḡ = Paff ∂f(x)(0) and
any g ∈ ∂f(x). Notice that,

PTM(x)(g) = PTM(x)(g − ḡ) + PTM(x)(ḡ) = PTM(x)(ḡ),

since g − ḡ ∈ par ∂̂f(x) ⊂ NM(x) (Proposition 4). Thus it is sufficient to show ḡ ∈ TM(x) in order
to deduce PTM(x)(g) = ḡ = Paff ∂f(x)(0) for all g ∈ ∂f(x). Since 0 − ḡ ∈ Naff ∂f(x)(ḡ) and Naff ∂f(x)(ḡ)
is a subspace, we obtain ḡ ∈ (aff ∂f(x))⊥. Applying [Lew03, Proposition 2.10] (which states that the
sharpness condition of partial smoothness holds locally) we obtain ḡ ∈ TM(x) as required.

The proof of Proposition 17 makes use of the smoothness of the function along the manifold, regularity,
normal sharpness, and the fact that normal sharpness holds locally. The necessity of smoothness along
the manifold and regularity are obvious, while the necessity of normal sharpness is illustrated by the
following simple example. Finally, in order for normal sharpness to hold locally subdifferential continuity
is required (see the proof of [Lew03, Proposition 2.10]). Thus all four conditions of partial smoothness
are used in Proposition 17.

Example 18 (Necessity of normal sharpness). Consider in R2, the affine space M = {1} × R and
the function f(x, y) = 1

2 x2. It is easy to show that f satisfies conditions (i), (ii) and (iv) of Definition 14
at x̄ = (1, 0). To calculate the Riemann gradient we note ∂f(1, 0) = {(1, 0)} and thus

∇Mf(1, 0) = PTM(x̄)(∂f(1, 0)) = (0, 0).

However since aff ∂f(1, 0) = {(1, 0)}, we find

Paff ∂f(1,0)(0, 0) = (1, 0) 6= (0, 0) = ∇Mf(1, 0).

Thus Proposition 17 fails without the normal sharpness.

The next example illustrates Proposition 17 in the language of the U-Lagrangian.

Example 19 (U-Lagrangian). We consider a convex function f , a point x̄ and a subgradient g ∈ ∂f(x̄).
Using the notation of Example 3, we express explicitly the dependence on x of the U-Lagrangian (see
(6)). The function u 7→ LU(x)(u, g) is shown in [LOS00, Theorem3.3] to be differentiable at u = 0 with

∇LU(x)(0, g) = PU(x)(g).

The gradient ∇LU(x)(0, g) is called the U-gradient of f at x. If f is Ck-partly smooth at x̄ relative to
the Ck-manifold M = {x̄ + Ūu + V̄ v(u), u ∈ Rp}, then Proposition 12 implies that

∇LU(x)(0, g) = PTM(x)(g) = ∇Mf(x).

Since ∇Mf is Ck−1 as a function over M (Lemma 11), the U -gradient is also Ck−1 with respect to
x ∈M. This completes a previous result in [MM05] which has asserted the continuity of the U-gradient
with respect to x ∈M.

3.3 Persistence and consequences

In this subsection we consider the situation of the Riemann gradient lying in the relative interior of the
subdifferential. We begin by showing that this situation is a persistent one. That is, given a partly smooth
function f , if the Riemann gradient at the point x̄ lies in the relative interior of the subdifferential at x̄,
then the Riemann gradient of a point x ∈M near x̄ also lie in the relative interior of the subdifferential
∂f(x). For this we need the following lemma (which mainly follows the spirit of [MM05, Theorem2.12]).
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Lemma 20 (Persistence inside the subdifferential). Suppose the function f is partly smooth relative
to the manifold M at the point x̄ ∈ M. Let g be a continuous selection of aff ∂f(·) on M, that is, a
continuous function g : M→ Rn such that g(x) ∈ aff ∂f(x). If g(x̄) ∈ ri ∂f(x̄), then for any x ∈M near
x̄, we have g(x) ∈ ri ∂f(x).

Proof. Observe first that the sharpness of f on M at x̄ (partial smoothness assumption (iii)) yields by
[Lew03, Proposition 2.10] that NM(x) = span(∂f(x)− g(x)), for all x ∈M close to x̄. With the help of a
basis of NM(x) depending continuously on x ∈M, we construct a continuous function x 7→ ψx such that

ψx : NM(x) −→ Rn−p

is a linear bijection between NM(x) and Rn−p. Consider then the convex-valued multi-function F : M ⇒
Rn−p defined by

F (x) = ψx(∂f(x)− g(x)).

Continuity of ∂f (by partial smoothness assumption (iv)), of g (by assumption) and of ψx (by construc-
tion) yield the continuity of F as a multifunction on M around x̄. Furthermore, observe that

g(x) ∈ ri ∂f(x) ⇐⇒ 0 ∈ intF (x).

Now, suppose for contradiction that there exists a sequence {xk} of points in M such that xk tends
to x and g(xk) /∈ ri ∂f(xk). Set Fk = F (xk) so that 0 /∈ intFk. We separate now 0 from intFk: there
exist sk ∈ Rn−p with ‖sk‖ = 1 such that

∀k ∈ N, ∀y ∈ Fk, s>ky ≤ 0. (9)

Extracting a subsequence if necessary, we can suppose that sk → s with ‖s‖ = 1. Since 0 ∈ intF (x̄), let
r > 0 be such that B(0, r) ⊂ F (x̄). Let v ∈ B(0, r); the continuity of F implies that there are vk ∈ Fk

such that vk → v. With (9), we can write s>kvk ≤ 0, for all k ∈ N. Passing to the limit, this gives s>v ≤ 0.
This can be done for any v ∈ B(0, r), so we have s>v = 0 for all v ∈ B(0, r). We conclude that s = 0,
which contradicts ‖s‖ = 1.

As an immediate corollary to Lemma 20, we obtain a more precise version of Proposition 17.

Corollary 21 (Steepest Descent). Suppose the function f is partly smooth relative to the manifold
M at the point x̄ ∈M such that the Riemann gradient ∇Mf(x̄) ∈ ri ∂f(x̄). Then for all x ∈M near x̄

∇Mf(x) = P∂f(x)(0).

Proof. Proposition 17 enables us to say that Paff ∂f(x)(0) = ∇Mf(x). Applying Lemma 20 with g(x) =
∇Mf(x), we obtain ∇Mf(x) ∈ ri ∂f(x) for x ∈M near x̄. Thus P∂f(x)(0) = Paff ∂f(x)(0).

Remark 22 (Steepest descent and Riemannian gradient). The direction of the steepest descent
plays an important role in optimization problems. In the nonsmooth case, instead of normalizing the
opposite direction of the gradient, we take the direction that minimizes the support function of ∂f(x)

min
‖d‖≤1

max
g∈∂f(x)

〈g, d〉,

see for instance [Wol75]. It is well known (by the min-max theorem), that this consists in taking

max
g∈∂f(x)

min
‖d‖≤1

〈g, d〉 = max
g∈∂f(x)

−〈g, g/‖g‖〉 = max
g∈∂f(x)

−‖g‖,

so that the direction of the steepest descent is obtained by calculating

− argmin{‖g‖, g ∈ ∂f(x)} = −P∂f(x)(0).
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Corollary 21 thus guarantees that if x ∈M is close to a point x̄ ∈M where ∇Mf(x̄) ∈ ri ∂f(x̄), then the
direction of the steepest descent in the “smooth world” of M and the direction of the steepest descent
of nonsmooth analysis are the same.

In our next proposition, we demonstrate how the Riemann gradient can be constructed using a fixed
subgradient.

Proposition 23 (Expression of ∇Mf(x) with a fixed subgradient). Suppose the function f is
partly smooth relative to the manifold M at the point x̄ ∈ M. Let ḡ be any element of ri ∂f(x̄). Then
for all x ∈M close to x̄,

∇Mf(x) = P∂f(x)(ḡ)− PNM(x)(ḡ).

Proof. Consider the function h(x) = f(x)−〈ḡ, x〉. It is easy to check that h also is partly smooth relative
to M. Moreover, since

∂h(x) = ∂f(x)− ḡ, (10)

we have 0 = ∇Mh(x̄) ∈ ri ∂h(x̄). Applying Corollary 21 to h at x̄ implies that for x ∈M near x̄,

∇Mh(x) = P∂h(x)(0). (11)

Observe that the left-hand side of this equation can be expressed as

P∂h(x)(0) = P∂f(x)−ḡ(0) = P∂f(x)(ḡ)− ḡ.

By using equation (10) and Proposition 17 (and the linearity of the projection mapping), the left-hand
side of equation (11) becomes

∇Mh(x) = PTM(x)(∂f(x)− ḡ) = ∇Mf(x)− PTM(x)(ḡ).

Thus we have
∇Mf(x)− PTM(x)(ḡ) = P∂f(x)(ḡ)− ḡ,

which is equivalent to the desired equality.

Example 24 (Primal-dual track). In [MS05], an improved version of fast-track is considered: this
consists in adding to the fast-track (or primal track) the so-called dual track defined as

Γ(u) = argmin{‖g‖2, g ∈ ∂f(x̄ + Ūu + V̄ v(u))}.
We saw in Example 15 that a convex function admitting a fast-track is partly smooth. Assuming in
addition that Γ(0) ∈ ri ∂f(x̄), thus Γ(0) = ∇M̄f(x̄)) and applying Corollary 21 we obtain that

Γ(u) = ∇M̄f(x̄ + Ūu + V̄ v(u))

for u ∈ Rp small. The primal-dual track is thus a tangent vector field on M̄, namely the Riemann
gradient vector field.

4 Prox-regularity and proximal points

4.1 Identification and characterization

In [Lew03] an example of a function which is partly smooth relative to two distinct manifolds is provided.
This naturally provides some concern, as many of our equivalent definitions for ∇Mf from Section 3
make no reference to the active manifold itself. The next proposition explains why these equivalences
can exist even if the active manifold is not unique.
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Proposition 25 (Multiple Manifolds). If the function f is partly smooth at the point x̄ relative to
two distinct manifolds M1 and M2, then the Riemann gradient is independent of the active manifold
examined, that is,

∇M1f(x̄) = ∇M2f(x̄).

Proof. Since f is partly smooth at x̄ relative to M1 we know that NM1(x̄) = aff ∂f(x̄). Similarly,
NM2(x̄) = aff ∂f(x̄). Thus NM1(x̄) = NM2(x̄) and by regularity we have TM1(x̄) = TM2(x̄). Therefore,
in view of Definition 8 we have ∇M1f(x̄) = ∇M2f(x̄) as desired.

Despite this, it might happen that the uniqueness of the active manifold is paramount. In [HL04]
it is shown that by the addition of prox-regularity, the active manifold of partial smoothness becomes
unique. In this section we investigate further effects that prox-regularity has on partly smooth functions.
We begin with the pertinent definition.

Definition 26 (Prox-Regularity). A function f is prox-regular at a point x̄ for a subgradient w̄ ∈
∂f(x̄) if f is finite and locally lower semicontinuous at x̄ and there exist ε > 0 and R > 0 such that

f(x′) ≥ f(x) + 〈w, x′ − x〉 − R

2
‖x′ − x‖2

whenever ‖x′ − x̄‖ < ε, ‖x − x̄‖ < ε, |f(x) − f(x̄)| < ε, and ‖w − w̄‖ < ε with w ∈ ∂f(x). We call a
function prox-regular at x̄ if it is prox-regular at x̄ for all w̄ ∈ ∂f(x̄).

It is worth noting that prox-regularity is a stronger condition than Clarke regularity in the sense that,
if a function is prox-regular at x̄ for a subgradient w̄, then w̄ ∈ ∂̂f(x̄). Hence, if a function is prox-regular
at x̄ then it is Clarke regular at x̄ [RW98, p. 610].

In [MS02] it was shown that for convex functions which admit a fast track, the proximal point mapping
was attracted to the fast track. By recalling the relationship between fast tracks and partial smoothness
(see Example 15), one can easily obtain that the proximal point map for a convex partly smooth function
is attracted to the active manifold of the function. In our next theorem we see that this holds true for
prox-regular partly smooth functions as well, a result which has also been shown in [MS04]. Theorem
28 further contains the previously unknown result that the proximal point mapping for a prox-regular
Ck-partly smooth function, is Ck−1. In order to prove this result, we require the following lemma from
[HL04, Theorem3.2].

Lemma 27. Suppose the function ρ : Rk × Rm → R is Ck-partly smooth at the point (ȳ, z̄) relative
to the manifold Rk ×M. Consider the family of parameterization functions ρȳ(·) = ρ(ȳ, ·). If z̄ is a
nondegenerate critical point of ρȳ (i.e. 0 ∈ ri ∂ρȳ(z̄)) and there exists ε > 0 such that

ρȳ(z) ≥ ρȳ(z̄) + ε||z − z̄||2

for all z ∈M near z̄, then there exist neighborhoods Nz̄ of z̄ and Nȳ of ȳ and a function Φ ∈ Ck−1 such
that for all parameters y ∈ Nȳ, Φ(y) ∈M is a critical point of ρy restricted to Nz̄.

Theorem 28 (Proximal points locate active manifolds). Suppose the function f is prox-bounded,
and prox-regular at the point x̄ and that f is Ck-partly smooth at x̄ relative to the Ck-manifold M (k ≥ 1)
with 0 ∈ ri ∂f(x̄). Then for λ > 0 sufficiently small, the proximal point mapping Pλf is Ck−1 near x̄ and

Pλf(x) = argmin
y∈M

{
f(y) +

1
2λ
||y − x||2

}
. (12)

In particular the proximal point Pλf(x) belongs to the manifold M.
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Proof. We begin by showing the function

ρ(y, z) =
1
2λ
||z − y||2 + f(z),

satisfies the conditions of Lemma 27 at (x̄, x̄) with ε = 1. Since f is partly smooth relative to M at x̄,
the function (y, z) 7→ f(z) is partly smooth relative to Rn×M [Lew03, Proposition 4.5]. As the addition
of a smooth function does not alter partial smoothness [Lew03, Corollary 4.6], we conclude that ρ is
partly smooth relative to Rm ×M at (x̄, x̄). Examining the parameterization functions ρy(·) = ρ(y, ·)
we immediately see that ∂ρx̄(x̄) = ∂f(x̄). Therefore, as x̄ is a nondegenerate critical point of f , it is a
nondegenerate critical point of ρx̄. The inequality ρx̄(x) ≥ ρx̄(x̄) + ||x− x̄||2 is equivalent to

f(x) ≥ f(x̄) + 〈0, x− x̄〉 −
(

1
2λ

− 1
)
||x− x̄||2. (13)

Since f is prox-regular at x̄ for 0, there exists R > 0 such that

f(x) ≥ f(x̄) + 〈0, x− x̄〉 − R

2
||x− x̄||2

for x near x̄. Then selecting λ sufficiently small to ensure that 1
2λ − 1 > R/2, we see inequality (13)

must hold. Thus ρ satisfies the conditions of Lemma 27 (with ε = 1). Therefore, there exists a function
Φ ∈ Ck−1 such that for all parameters y near x̄, Φ(y) ∈M is a critical point of ρy near x̄. That is

0 ∈ ∂ρy(Φ(y)) = ∂f(Φ(y)) +
1
λ

(Φ(y)− y),

for all y near x̄. By [PR96b, Theorem 4.4] this implies Φ(y) = Pλ(y). Since Φ(y) ∈M and Φ(y) ∈ Ck−1

the proof is complete.

Theorem 28 tells us that for prox-regular partly smooth functions, the proximal points are extremely well
behaved. Our next theorem characterizes proximal points in terms of the Riemann gradient.

Theorem 29 (Characterization of proximal points). Suppose the function f is prox-bounded, and
prox-regular at the point x̄ and that f is partly smooth at x̄ relative to a manifold M with 0 ∈ ri ∂f(x̄).
Then for λ > 0 sufficiently small and x sufficiently close to x̄ ∈ M the proximal point Pλ(x) belongs to
M and is characterized by

y = Pλ(x) ⇐⇒ λ∇Mf(y) = PTM(y)(x− y)

⇐⇒ PTM(y)(∇f̃(y) + 1
λ (y − x)) = 0

⇐⇒ 1
λ (x− y) ∈ ∇f̃(y) + NM(y),

where f̃ is a smooth representation of f along M such that ∇f̃(x̄) = 0.

Proof. By Proposition 7 we can find a smooth representation of f along M, f̃ such that ∇f̃(x̄) = 0. For
λ sufficiently small and x sufficiently close to x̄ we know by Theorem 28 that Pλf(x) ∈M, and therefore

Pλ(x) = argminy∈M{f(y) + 1
2λ‖x− y‖2}

= argminy∈Rn{f̃(y) + δM(y) + 1
2λ‖x− y‖2}

= Pλ(f̃ + δM)(x).

Observe now that f̃ + δM is prox-regular at x̄ and that 0 ∈ ∂(f̃ + δM)(x̄). Then [PR96b, Theorem 4.4]
yields

y = Pλ(f̃ + δM)(x) ⇐⇒ 1
λ

(x− y) ∈ ∇f̃(y) + NM(y),

for x close to x̄. Projecting this equality on TM(y) gives the remaining two equivalences, by using linearity
of the projection and Definition 8.
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4.2 Interpretation of the VU-proximal algorithm

The VU proximal point algorithm developed by Mifflin and Sagastizábal [MS05] follow the predictor-
corrector pattern of Subsection 2.3. Specifically, the conceptual form of this algorithm computes the next
iterate by the following process for x ∈M:

1. (Predictor) make a Newton step in the tangent space

x̃+ = x− [∇2
Mf(x)]−1∇Mf(x).

2. (Corrector) make a proximal step (towards M)

x+ = Pλ(x̃+).

The algorithm presented in [MS05, Algorithm6] is an implementable form of this predictor-corrector
scheme: the matrix Hk approximates [∇2

Mf(x)]−1, sk approximates the “dual track” (that is ∇Mf(x) by
Example 24) and pk+1 approximates x+ as well.

In this subsection we compare the VU -proximal algorithm and the projected Newton method (see
Subsection 2.3). To enlighten notation, we introduce, for (x, u) ∈ TM,

(yδ =) yλ
δ = PM(x + u) = argminy{δM(y) + 1

2λ‖x + u− y‖2}
yλ

f = Pλ(x + u) = argminy{f(y) + 1
2λ‖x + u− y‖2}.

It follows directly from its definition that yλ
δ ∈ M. Note also that since yλ

δ is independent of λ > 0, the
abbreviation of yλ

δ = yδ is acceptable. On the other hand, Theorem 28 guarantees that yλ
f ∈M (provided

x + u is sufficiently close to x̄ and λ is sufficiently small). Thus we obtain that

‖x + u− yδ‖2 ≤ ‖x + u− yλ
f ‖2. (14)

Applying this to the definition of yλ
f we find

f(yλ
f ) + 1

2λ‖x + u− yλ
f ‖2 ≤ f(yδ) + 1

2λ‖x + u− yδ‖2
≤ f(yδ) + 1

2λ‖x + u− yλ
f ‖2,

therefore
f(yλ

f ) ≤ f(yδ). (15)

Thus, comparing with the projection step, the proximal point step is at least as large (in norm) and
causes at least as great of a decrease in function value.

Proposition 30 shows that in general the proximal point method actually takes a larger step and
causes greater decrease in the function value. In fact the only time the proximal point and projection
coincide is when the projection method successfully finds a critical point.

Proposition 30 (Prox vs. Projection). Suppose the function f is prox-regular at the point x̄, and
partly smooth there relative to the manifold M with 0 ∈ ri ∂f(x̄). For a point x, let us consider

(xδ =) xλ
δ = PM(x) (proximal step) and xλ

f = Pλf(x) (projection step).

Suppose x is sufficiently close to x̄ and ρ > 0 is sufficiently small that for any λ < ρ Theorem 28 and
Theorem 29 apply. Then for a smooth representation f̃ of f along M such that ∇f̃(x̄) = 0 the following
properties are equivalent:

(i) xδ = xλ
f for some λ < ρ ;

(ii) ∇Mf(xδ) = 0 ;
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(iii) 0 ∈ ∂f(xδ) ;

(iv) ∇f̃(xδ) ∈ NM(xδ) ;

(v) xλ
f = xδ, for all λ < ρ.

Proof. Note again that xλ
δ is independent of λ > 0, so we can make use of the abbreviation xλ

δ = xδ.
On the other hand, Proposition 7 shows that f̃ exists as required. Since xδ is independent of λ we have
− 1

λ (xδ − x) ∈ NM(xδ), for all λ > 0. In fact, as NM(xδ) is a subspace this optimality condition can be
strengthened to:

y = xδ ⇐⇒ −R(y − x) ∈ NM(y), for all R. (16)

(i) ⇒ (ii). If xλ
f = xδ we have (x−xλ

f ) ∈ NM(xλ
f ). Therefore PTM(xλ

f )(x−xλ
f ) = 0, which by Theorem 29

implies 0 = ∇Mf(xλ
f ) = ∇Mf(xδ).

(ii) ⇔ (iii) ⇔ (iv). It follows from Definition 8 and Corollary 21.

(iv) ⇒ (v). Suppose ∇f̃(xδ) ∈ NM(xδ), thus −∇f̃(xδ) ∈ NM(xδ) too, since NM(xδ) is a subspace. For
any λ > 0, by equation (16) we have 1

λ (x− xδ) ∈ NM(xδ). Summing up these two inclusions, we obtain

1
λ

(x− xδ) ∈ ∇f̃(xδ) + NM(xδ).

Thus, for λ ≤ ρ such that Theorem 29 applies, we obtain xδ = Pλ(x), thus (v) holds.

(v) ⇒ (i). It is obvious.

The VU -proximal algorithm has thus a good behavior. In addition, the forthcoming theorem shows
that the quadratic convergence is not lost.

Theorem 31 (Quadratic convergence of the VU-proximal algorithm). Let f be prox-bounded,
prox-regular at the point x̄ and C2-partly smooth at x̄ relative to the manifold M. Suppose that 0 ∈
ri ∂f(x̄) and that ∇2

Mf(x̄) is nonsingular. Then the conceptual proximal VU-proximal algorithm converges
quadratically when started sufficiently close to x̄.

Proof. For x ∈M, let us set

h(x) = x− [∇2
Mf(x)]−1∇Mf(x) and N(x) = Pλ(h(x)),

such that one iteration of the algorithm is x+ = N(x). Note that ∇2
Mf(x) is also nonsingular at x ∈ M

around x̄, hence h is well-defined and smooth on M near x̄. By Theorem 28, Pλ is smooth near x̄ with
values on M. This yields that N : M →M is smooth too. Taking the first order development of this
smooth function around x̄ (relative to M), we have

N(x) = N(x̄) + DN(x̄)(x− x̄) + O(‖x− x̄‖2) (17)

Since 0 ∈ ∂f(x̄) and f is prox-regular at x, we have

N(x̄) = Pλ(h(x̄)) = Pλ(x̄) = x̄.

On the other hand,
DN(x̄) = DPλ(h(x̄))Dh(x̄).

Since ∇Mf(x̄) = 0, for any u ∈ TM(x̄) we have

Dh(x̄)(u) = u−D([∇2
Mf(x̄)]−1)∇Mf(x̄)u + [∇2

Mf(x̄)]−1∇2
Mf(x̄)u = u− u = 0.

It follows from (17) that N(x)− x̄ = O(‖x− x̄‖2) which proves the quadratic convergence.

Remark 32. Theorem 31 presents assumptions that ensure the efficiency of the conceptual VU -algorithm.
In [MS05], such a theorem is stated, but it requires more technical assumptions that seem unavoidable
when dealing with concrete algorithms that do not require explicit knowledge of M.
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[MS05] R. Mifflin and C. Sagastizábal. A VU -proximal point algorithm for convex minimization. Math.
Programming, 104(3), 2005.

[Ous99] F. Oustry. The U-Lagrangian of the maximum eigenvalue function. SIAM J. Optim., 9(2):526–
549, 1999.

[PR96a] R. A. Poliquin and R. T. Rockafellar. Generalized hessian properties of regularized nonsmooth
functions. SIAM J. Optim., 6(4):1121–1137, 1996.

[PR96b] R. A. Poliquin and R. T. Rockafellar. Prox-regular functions in variational analysis. Trans.
Amer. Math. Soc, 348(5):1805–1838, 1996.

[Roc82] R. T. Rockafellar. Favorable classes of Lipschitz-continuous functions in subgradient optimiza-
tion. In Progress in Nondifferentiable Optimization, volume 8 of IIASA Collaborative Proc. Ser.
CP-82, pages 125–143. Internat. Inst. Appl. Systems Anal., Laxenburg, 1982.

[RW98] R. Tyrrell Rockafellar and R. J.-B. Wets. Variational Analysis. Number 317 in Grundlehren der
mathematischen Wissenschaften. Springer-Verlag, Berlin, 1998.

[Sha03] A. Shapiro. On a class of nonsmooth composite functions. Math. Oper. Res., 28:677–692, 2003.

[Smi94] S. T. Smith. Optimization techniques on Riemannian manifolds. Fields Inst. Comm., 3:113–136,
1994.

[Wol75] P. Wolfe. A method of conjuguate subgradients. Math. Program. Study, 3:145–173, 1975.

[Wri93] S. J. Wright. Identifiable surfaces in constrained optimization. SIAM J. Control Optim.,
31(4):1063–1079, 1993.

19



Aris DANIILIDIS
Departament de Matemàtiques
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